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> Disclaimer: Robotics is an interdisciplinary and
broad field. What I'm going to present is my personal
view of the publishing landscape in robotics.




Agenda

> Writing a good paper

> Robotics conference /journals landscape



Writing a good paper

> How to craft “the research story” for a paper?

> How to convey the fundamental science or
technology impact of your work?



Course Project 2 Research Paper

> Course project
- Advances the knowledge of the students

- Students learn something new that they didn’t know

> Research paper
- Advances the knowledge of the community

- Researchers learn something new that the community
didn’t know

> Goal of a research paper is to disseminate the new
knowledge to the rest of the community



Your paper needs to

1. What did the community know before you did
whatever you did?

2. What are the new things you learned after you did
whatever you did?

3. What exactly did you do?




Your paper needs to

1. What did the community know before you did
whatever you did?

2. What are the new things you learned after you did
whatever you did?

3. What exactly did you do?

A common rookie mistake is to focus only on the
“what did you do?” question and ignore the first two.
Difference between a course project report and a
research paper.



Your paper needs to

1. What did the community know before you did
whatever you did?

2. What are the new things you learned after you did
whatever you did?

3. What exactly did you do?

If you can’t answer the questions, then something is
wrong... need to take a step back.



Your paper needs to

1. What did the community know before you did
whatever you did?

2. What are the new things you learned after you did
whatever you did?

3. What exactly did you do?

You should constantly be asking yourself the first
two questions. Even before you start working on the
problem (hypothesize the answers). The answers may
change as your research evolves -- that’s okay.



* Introduction
— Overview of Q1, Q2, Q3; plus
— Why should the community care?
* Related Work

~ Q1
* Problem Formulation
* Algorithm/Methodology
* Evaluation
- Q2 & Q3
* Conclusion and Future Work
— Overview of Q1, Q2, and Q3; plus

— What does the community still not know?



Your paper needs to

1.

N

What did the community know before you did
whatever you did?

. What are the new things you learned after you did

whatever you did?

. What exactly did you do?
. Why should the community care?

. What does the community still not know?



An Approximation Algorithm for Risk-averse
Submodular Optimization

Lifeng Zhou and Pratap Tokekar

Department of Electrical & Computer Engineering, Virginia Tech, USA.
{1fzhou, tokekar}Qvt.edu

Abstract. We study the problem of incorporating risk while making
combinatorial decisions under uncertainty. We formulate a discrete sub-
modular maximization problem for selecting a set using Conditional-
Value-at-Risk (CVaR), a risk metric commonly used in financial analy-
sis. While CVaR has recently been used in optimization of linear cost
functions in robotics, we take the first stages towards extending this to
discrete submodular optimization and provide several positive results.
Specifically, we propose the Sequential Greedy Algorithm that provides
an approximation guarantee on finding the maxima of the CVaR cost
function under a matroidal constraint. The approximation guarantee
shows that the solution produced by our algorithm is within a constant
factor of the optimal and an additive term that depends on the optimal.
Qur analysis uses the curvature of the submodular set function, and
proves that the algorithm runs in polynomial time. This formulates a
number of combinatorial optimization problems that appear in robotics.
We use two such problems, vehicle assignment under uncertainty for
mobility-on-demand and sensor selection with failures for environmental
monitoring, as case studies to demonstrate the efficacy of our formula-
tion.

1 Introduction

Combinatorial optimization problems find a variety of applications in robotics.
Typical examples include:

e Sensor placement: Where to place sensors to maximally cover the environ-
ment [1] or reduce the uncertainty in the environment [2]?

e Task allocation: How to allocate tasks to robots to maximize the overall Q4 Why ShOUId the
utility gained by the robots [3]? .
e Combinatorial auction: How to choose a combination of items for each player commun Ity Ca,l"e?

to maximize the total rewards [4]?

Algorithms for solving such problems find use in sensor placement for environ-
ment monitoring [1, 2], robot-target assignment and tracking [5-7], and informa-
tive path planning [8]. The underlying optimization problem in most cases can
be written as:

£(S), (1)

max
SEZ,SeX



where X denotes a ground set from which a subset of elements S must be cho-
sen. f is a monotone submodular utility function [9,10]. Submodularity is the
property of diminishing returns. Many information theoretic measures, such as
mutual information [2], and geometric measures such as the visible area [11], are
known to be submodular. Z denotes a matroidal constraint [9, 10]. Matroids are
a powerful combinatorial tool that can represent constraints on the solution set,
e.g., cardinality constraints (“place no more than k sensors”) and connectivity
constraints (“the communication graph of the robots must be connected”) [12].
The objective of this problem is to find a set S satisfying a matroidal constraint
Z and maximizing the utility f(S). The general form of this problem is NP-
complete. However, a greedy algorithm yields a constant factor approximation
guarantee [9, 10].

In practice, sensors can fail or get compromised [13] or robots may not know
the exact positions of the targets [14]. Hence, the utility f(S) is not necessarily
deterministic but can have uncertainty. Our main contribution is to extend the
traditional formulation given in Eq. 1 to also account for the uncertainty in the
actual cost function. We model the uncertainty by assuming that the utility
function is of the form f(S,y) where S € X is the decision variable and y € )
represents a random variable which is independent of S. We focus on the case
where f(S,y) is monotone submodular in § € X and integrable in y.

The traditional way of stochastic optimization is to use the expected utility as
the objective function: maxsez se ¥Ey[f(S,y)]. Since the sum of the monotone
submodular functions is monotone submodular, E,[f(S,y)] is still monotone
submodular in S. Thus, the greedy algorithm still retains its constant-factor
performance guarantee [9, 10]. Examples of this approach include influence max-
imization [15], moving target detection and tracking [14], and robot assignment
with travel-time uncertainty [16].

While optimizing the expected
utility has its uses, it also has its
pitfalls. Consider the example of
mobility-on-demand where two self- Demand
driving vehicles, v; and v, are avail- ) /—\“‘/—\’
able to pick up the passengers at a ud \
demand location (Fig. 1). vy is closer =
to the demand location, but it needs
to cross an intersection where it may
need to stop and wait. v is further
from the demand location but there i B g
is no intersection along the path. The Travel time distribution of vy Travel time disribution of v
travel time for v; follows a bimodal
distribution (with and without traf-
fic stop) whereas that for v follows
a unimodal distribution with a higher
mean but lower uncertainty. Clearly, if
the passenger uses the expected travel
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Fig.1l. Mobility on demand with travel
time uncertainty of self-driving vehicles.

Q4. Why should the
community care!?

QI. What did the community
know before you did whatever
you did?



time as the objective, they would choose v;. However, they will risk waiting a
much longer time, i.e., 17 ~ 20 min about half of the times. A more risk-averse
passenger would choose vz which has higher expected waiting time 16 min but
a lesser risk of waiting longer.

Thus, in these scenarios, it is natural to go beyond expectation and focus on
a risk-averse measure. One popular coherent risk measure is Conditional- Value-
at-Risk (CVaR) [17,18]. CVaR takes a risk level a which is the probability of the
worst a-tail cases. Loosely speaking, maximizing CVaR is equivalent to maxi-
mizing the expectation of the worst a-tail scenarios.! This risk-averse decision
is rational especially when the failures can lead to unrecoverable consequences,
such as a sensor failure.

Related work. Yang and Chakraborty studied a chance-constrained com-
binatorial optimization problem that takes into account the risk in multi-robot
assignment [19]. They later extended this to knapsack problems [20]. They solved
the problem by transforming it to a risk-averse problem with mean-variance mea-
sure [21]. Chance-constrained optimization is similar to optimizing the Value-
at-Risk (VaR), which is another popular risk measure in finance [22]. However,
Majumdar and Pavone argued that CVaR is a better measure to quantify risk
than VaR or mean-variance based on six proposed axioms in the context of
robotics [23].

Several works have focused on optimizing CVaR. In their seminal work [18],
Rockafellar and Uryasev presented an algorithm for CVaR minimization for re-
ducing the risk in financial portfolio optimization with a large number of in-
struments. Note that, in portfolio optimization, we select a distribution over
available decision variables, instead of selecting a single one. Later, they showed
the advantage of optimizing CVaR for general loss distributions in finance [24].

When the utility is a discrete submodular set function, i.e., f(S,y), Maehara
presented a negative result for maximizing CVaR [25]— there is no polynomial
time multiplicative approximation algorithm for this problem under some reason-
able assumptions in computational complexity. To avoid this difficulty, Ohsaka
and Yoshida in [26] used the same idea from portfolio optimization and proposed
a method of selecting a distribution over available sets rather than selecting a
single set, and gave a provable guarantee. Following this line, Wilder considered
a CVaR maximization of a continuous submodular function instead of the sub-
modular set functions [27]. They gave a (1 — 1/e)-approximation algorithm for
continuous submodular functions and also evaluated the algorithm for discrete
submodular functions using portfolio optimization [26].

Contributions. We focus on the problem of selecting a single set, similar
to [25], to maximize CVaR rather than portfolio optimization [26,27]. This is
because we are motivated by applications where a one-shot decision (placing
sensors and assigning vehicles) must be taken. Our contributions are as follows:

e We propose the Sequential Greedy Algorithm (SGA) which uses the deter-
ministic greedy algorithm [9, 10] as a subroutine to find the maximum value
of CVaR (Algorithm 1).

! We formally review CVaR. and other related concepts in Section 2.1

QI. What did the community

know before you did whatever

you did?

Q3. Why exactly did you do?



e We prove that the solution found by SGA is within a constant factor of
the optimal performance along with an additive term which depends on the
optimal value. We also prove that SGA runs in polynomial time (Theorem 1)
and the performance improves as the running time increases.

e We demonstrate the utility of the proposed CVaR maximization problem
through two case studies (Section 3.2). We evaluate the performance of SGA
through simulations (Section 5).

Organization of rest of the paper. We give the necessary background
knowledge for the rest of the paper in Section 2. We formulate the CVaR sub-
modular maximization problem with two case studies in Section 3. We present
SGA along with the analysis of its computational complexity and approximation
ratio in Section 4. We illustrate the performance of SGA to the two case studies
in Section 5. We conclude the paper in Section 6.

2 Background and Preliminaries

We start by defining the conventions
used in the paper.
Calligraphic font denotes a set

(e.g., A). Given a set A, 2** denotes Distribution of f(S,y)

its power set. |A| denotes the cardi-

nality of A. Given a set B, A\ B de- Puobsilly &

notes the set of elements in .4 that !

are not in B. Pr[-] denotes the prob- Wonstcase CVaR VaR  Expected urility Uiliey

ability of an event and E[-] denotes
the expectation of a random variable.
[z] = min{n € Z|z < n} where Z
denotes the set of integers.

Next, we give the background on
set functions (in the appendix file)
and risk measures.

Fig. 2. An illustration of risk measures:
VaR and CVaR.

2.1 Risk measures

Let f(S,y) be a utility function with decision set S and the random variable
y. For each S, the utility f(S,y) is also a random variable with a distribution
induced by that of y. First, we define the Value-at-Risk at risk level a € (0, 1].
Value at Risk:

VaR,(S) = inf{r € R, Pr[f(S,y) < 7] > a}. (2)

Thus, VaR,(S) denotes the left endpoint of the a-quantile(s) of the random
variable f(S,y). The Conditional-Value-at-Risk is the expectation of this set of
a-worst cases of f(S,y), defined as:

Q2. Why does the community

know after you did whatever
you did?



How to get a paper rejected?

* Describe only what you did but not what you learned
— Reviewers can’t answer Q2. Reject.

* Focus only on the technical ideas but miss the big
picture

— Reviewers can’t answer Q4. Reject.

* Write a paper without reading other papers
— Can’t answer Q1 & Q2. Reject.

* Use vague language and weasel words
— Can’t answer Q3 & Q5. Reject.



* How to write a good (robotics) conference paper?

* How to convert a conference paper into a good
journal paper?



3 Step Strategy

1. Tell them what you are going to tell them

2. Then actually tell them
3. Then tell them what you just told them

* This 3 step strategy works at every level
— Paper
— Section
— Sub-section

— Paragraph



Start with an outline of the paper

* Introduction

* Related Work

* Problem Formulation

* Algorithm/Methodology

* Evaluation (with Discussion)

* Conclusion and Future Work



Then a slightly more detailed outline

e Introduction * Algorithm/Methodology
— Q4 — Version 1
— Version 2
- Q1,Q2,Q3 * Evaluation
— List of contributions — Simulations
* Related Work — Experiments
— Q2 for area #1 — Discussion (Q2)
* Conclusion and Future Work
— Q2 for area #2 _ O3

* Problem Formulation ~ Q5

20



Then an even more detailed outline

* Remember the 3 step strategy

* Start writing down what you will be saying in each
subsection, in each paragraph..

* Filling in the details after that is easy

* [terate, iterate, iterate

* Spend more time editing than writing!

21



Notation and Problem Formulation

* You should have a separate section /sub-section where
you

— describe the formal notation in your paper
— give detailed list of assumptions
— give precise definitions of terms that you are using

— give precise, formal definition of the problem

* Q3: If the reviewer is unsure about what you did, then
they may make the most uncharitable interpretation.

22



3 Problem Formulation

In this section, we formally define the terminology and the two problems studied.
We assume that the environment is a compact domain U C R2?2. We make the
following assumptions about the spatial function f, = f(z):

Assumption 1 (Smoothness) The true function is smooth in the sense of
Lipschitz [21], i.e., Vxi,x; € U @ |fo, — fz,;| < L||zs — z5||2, where L is the Lip-
schitz smoothness constant.

Assumption 2 (Kernel) The GP regression uses a squared-exponential ker-
nel [7]. The hyperparameters of the kernel (length scale and signal variance) are
known a priori.

Assumption 3 (Bound on Measurements) Optimal algorithms for both prob-

lems satisfy the chance constraints using a finite number of measurements, no
more than N.

Let X denote the set of measurement locations within U produced by an
algorithm. In the placement problem, our goal is to minimize the cardinality
of X whereas in the path planning problem the goal is to minimize the time
required to visit and obtain measurements at X. The two problems are formally

defined below.

23



Problem 1 (Placement). Given Assumptions 1-3, find the minimum number of
measurement locations in U, such that the posterior GP prediction for any point
in U is within d€ of the actual value with probability at least ¢, i.e.,

minimize number of measurement locations | X|
subject to Pr{|i(z) — f(z)| <€} > 6,V e U

where f(z) is the actual function value that is to be estimated at a point z € U,
and fi(x) is the predicted value using measurements obtained at locations X.

Problem 2 (Mobile). Given Assumptions 1-3, find a minimum time trajectory
for a mobile sensor that obtains a finite set of measurements at one or more
locations in U, such that the posterior GP prediction for any point in U is
within 4 of the true value with probability at least ¢, i.e.,

minimize len(7) + nB(X),
subject to Pr{|i(z) — f(z)| <€} > §,Vz € U.

7 denotes the tour of the robot. Assume that the robot travels at unit speed,
obtains one measurement in 7 units of time and obtains (X)) total measurements
at the measurement locations X. Here, we use the function 3(X) to take into
account the fact that the robot may obtain more than one measurement at a
specific location. Therefore, the number of measurements can be more than |X]|.

24



Not just for “theoretical’” papers

* Even if you are writing an experimental paper, you
should be precise in defining the problem

* Think of it this way: your problem formulation
section defines the scope of your work

* What are the inputs?

* What are the assumptions/restrictions on the inputs?

* What are the expected outputs?

* etc.

25



The input to our algorithm is a set of n sites, x;, that
must be visited by the UAV. We start with a list of common
assumptions: (1) unit rate of discharge (1% per second); (2)
UAV has an initial battery charge of 100%; (3) UAV and
UGVs start at a common depot, d; (4) all the sites are at
the same altitude; (5) UAV can fly between any two sites
if 1t starts at 100% battery level; (6) UGVs have unlimited
fuel/battery capacity. All but the last assumption are only
for the sake of convenience and ease of presentation and can
be easily relaxed. Although UGVs cannot have unlimited
operational time, it is a reasonable assumption since UGVs
can have much larger batteries or can be refueled quickly.

26



Robotics Conferences

& j | RO B OTI c s 2020 IEEE/RSJ

ICRA 2020

:g$

e 3\ (W DEYSIIAY B  International Conference on

31 May ® 4 June 2020 Intelligent Robots and Systems(IR0OS)

Palais des Congreés de Paris
Paris « FRANCE

October 25-29, 2020 Las Vegas, NV, USA

Deadline: September |5t Deadline: January 30t Deadline: March |5t
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Robotics Conferences

ICRA 2020

31 May e 4 June 2020

Palais des Congreés de Paris

Paris ¢« FRANCE

’ R 0 B OTI C S 2020 IEEE/RSJ

A N HA RN DEYSIIANBY  International Conference on

Intelligent Robots and Systems(IROS)

October 25-29, 2020 Las Vegas, NV, USA

Deadline: September 15t Deadline: January 30t Deadline: March |5t
> DARS (every even year) distributed robotics
> MRS (every odd year) multi-robot systems
> WAEFR (every even year) algorithmic robotics
> ISER (every even year) experimental robotics
> CoRL (every year) robot learning

ISRR (every odd year)

position papers
28



Journals

>

>

>

[EEE TRO
IJRR
IEEE TASE

JFR

IEEE RAM
AuRO
IEEE RA-L

6.483"

6.134

5.224

4.345 field robotics

4.25 magazine/popular articles
3.634

not yet short papers, fast decision

29

*Impact factors. Frankly, ignore them. All of these venues are good.



Conference vs. Journal

* 6 page conference paper published at ICRA /IROS
— Demonstrates that the idea is sound and promising

— Gather feedback from audience
evolves into
* 10+ page journal paper

— Comprehensively evaluated

— ~40% addition to the conference paper

30



Active Target Tracking with Self-Triggered Communications
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ICRA ‘17

T-ASE ‘19

A preliminary version of this paper was first presented
in [13] without the decentralized Kalman filter with covariance
intersection and the analysis for the limited communication
and sensing ranges (Section V), the Gazebo simulation exper-

iments, and the proof-of-concept experiment (Section VI).




A preliminary version of this paper was first presented
in [13] without the decentralized Kalman filter with covariance
intersection and the analysis for the limited communication

Demonstrates that and sensing ranges (Section V), the Gazebo simulation exper-

idea is sound and iments, and the proof-of-concept experiment (Section VI).

promising but under

ideal conditions Comprehensively evaluated under

bractical conditions

sensing noise, kinematic constraints, limited sensing
range, limited communication range, hardware
experiments




ICRA/IROS + RAL
ICRA 2020

2020 IEEE/RSJ

International Conference on

31 May e 4 June 2020 Intelligent Robots and Systems(IROS)

Palais des Congrés de Paris
paris ° FRANCE October 25'29, 2020 Las Vegas, NV, USA

IROS+RAL: Feb 24t

: th
ICRA+RAL: Sep 10 IROS: March |st

ICRA: Sep 15

Papers can be submitted to ICRA and IROS through two
ways:

1. Conference only: up to 6 pages; can be later submitted
to a journal with suitable additions

2. Conference+RAL: up to 8 pages; independently
reviewed
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ICRA only or ICRA+RAL

* If the work is comprehensively evaluated and can fit
in 8 pages = submit to ICRA+RAL

* If the idea is promising and sound but has potential
to be more thoroughly evaluated -

— submit to ICRA only

— then expand the work and submit to other
journals

35



v

ICRA: accept RAL: accept

>

v

v

Present the paper at ICRA
Published in RAL but not in conference proceedings

Cannot submit it again to another conference /journal

36



>
>

>

ICRA: accept RAL: reject
> Published in the ICRA proceedings
Present the paper at ICRA

Can submit an expanded version to another journal

v

v
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v

>

>

>

ICRA: reject RAL: accept
> Published in RAL
» Cannot present at ICRA

» Cannot submit it to another conference /journal

38



>
>

>

ICRA: reject
> Sorry!

RAL: reject

39



I"'ve had the pleasure of all four outcomes

> ICRA 719 #1: accept RAL 19 #1: accept
> ICRA 719 #2: accept RAL 19 #2: reject
> ICRA "19 #3: reject RAL "19 #3: reject
> ICRA “17: reject RAL “17: accept

ICRA decisions are one-shot: cannot respond to
reviewers comments.

RAL usually gives an option for one resubmission and
responding to reviewer comments.

40



Misconceptions about robotics papers

Conference papers do not need to include any
evaluation since that is the job of a journal paper.

No.

* You still need to demonstrate the idea is sound and
promising.

* Hard to do it without some argument (qualitative,
quantitative, mathematical). It is a matter of degree.

* Ultimately it is subjective and at the discretion of the
reviewers and editors.

41



Misconceptions about robotics papers

Hardware experiments on actual robots are necessary.
No.

* Since 2018, my group has published exactly 16 papers
with hardware/real-data experiments and 16 without
any hardware/real-data experiments

* You must still demonstrate that your idea is sound
and conduct rigorous evaluation

* You can do that through various means: proofs,
simulations, experiments, datasets

42



Misconceptions about robotics papers

Hardware experiments on actual robots are sufficient.
No.

* Difference between proof-of-concept hardware
demonstrations and rigorous experimental
evaluation.

* The latter may be sufficient but the former is not.
Need to back it up with more simulations/proofs.

* Recall Q3: what did you learn?

43



Misconceptions about robotics papers

My algorithm/controller/system design has to be
perfect in all conditions. No.

* A common mistake is to expect perfection from the
paper.

* But you must identify exactly what conditions it
works in, how well it works, and when it does not

work.

* Recall Q3 (What exactly did you do?) and Q5 (What do
we still not know?)

44



Take-Home Message

* Remember the 5 Q’s
* 3 step strategy for writing a paper

* Conference papers must demonstrate the idea is
sound and promising

* Journal papers must comprehensively evaluate the
idea

45



