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Abstract—We describe our efforts on building a robotic '
system for detecting and tracking radio-tagged invasive fis !
/"\ L :

using teams of autonomous ground and surface vehicles. In
addition to system building and field experiments, our effots 2
clustered around three fundamental problems: (1) Search: bw =
to find the target as quickly as possible, (2) Active localiz#on:

how to actively choose measurement locations to accurately <
estimate target locations, and (3) Long-term autonomy thragh
energy-efficiency and harvesting. We present specific progin
formulations and a summary of our results so far. We conclude  Fig. 1. (Left) Two robotic boats tracking invasive fish in Miesota lakes.
the paper with a discussion on our progress and next steps.  (Right) Rovers used in winter experiments when the lakeszfreover.

. INTRODUCTION
Habitat monitoring is an application domain wherethe'r antennas and obtain bearing measurements which are

robotics can have a huge positive impact. Robots equipp N used _to es%UmaFe f|sr]: I(r)]catlons. '5he uncertainty in t?]e
with a wide variety of sensors can monitor large areas fdrotimates is a function of the sensor/target geometry. The

extended periods of time, and provide valuable data f(ﬁﬁco_nd Fask IS t_o chopse meaSL_Jrer_‘nent Ioc_athns So as to
scientists, policy makers and other stake-holders. Atanees _obtaln h'gh_ quality estimates. Thescnve-locallza_tmntask
time, it is an exciting research frontier for robotics. Nume 'S challenging because the measurement locations must be

ous fundamental robotics problems such as coverage, sea?@r?sen in an online fashion as new information becomes

and tracking arise as components of habitat monitoring;tasl@va'lable' Finally, in the third task, we focus amergy

In order for robots to deliver the promised impact, thesgfficiencyAs a building block for other tasks, we study the

tasks must be executed in unstructured and often dynanﬂ Oblimﬁ_f m‘?"'”ggf‘?m poing tg pointb in anl energylgﬁl-

settings. For long term operation, issues of robustness aﬁ'&nt ashion. ina |_t|on, our robots carry solar pane S0

energy management must be addressed. notion of efficiency involves not only energy consumption
Since 2010, we have been working on building a roboti@Ut alsp potential gains attained from_ harvesting.

sensor network to monitor Common Carp, an invasive fisp " thiS paper, we present an overview of our progress so

infesting lakes across the Midwest. Biologists surgicall ar. In a_dd|t|on to tackling und_erlymg algorithmic p_rohhs,
insert radio tags in the fish and manually track them t is project challenged us to implement our algorithms and

study their behavior and find aggregations. The trackingescti them ip Li_eld C]?nditif(.)r](sj' we present 3\;” mainl rdesu:;[s
process is performed throughout the year by searching f pd report findings from field experiments. We conclude the

signals emitted from the tags using directional antenfihs [ paper with a reflection of wherg_we are anq a d'SCUSS'O.n
This is a difficult and labor intensive job, especially ino" the challgnges and opportunities for robotics research i
the winter. The primary goal of our project is to build ahab|tat monitoring.

autonomous system which can track radio-tagged fish. We Il. SYSTEM OVERVIEW

use autonomous surface vehicles in the summer and switch ] ]
to ground vehicles in the winter when lakes freeze. We execute our carp tracking algorithms on robot boats

From a robotics perspective, we focus on three sets 8} the summer and robot rovers in the winter which drive
problems. The first task is to find the fish. Radio tags hav&ongd the frozen surface of the lake. In this section we will
limited ranges which can drop to 10-20 meters depending difeSent the details of these systems.
the depth of the fish and the strength of the tags’ batteries, QU boats are built on the OceanScience Q-Boat 1800D

Therefore, when the robots are launched, they may not hedt® Q-Boat is 1.8m long, with a cruising speed of about 1

the signal. How should they move so that they establish/s and a turning radius of 5m. Our_rovers are built on the
contact with the signal as quickly as possible? This is thg€arpath Husky A100 and A28pwhich are both rugged

searchtask. Once the fish are found, they can be localize@"d heavy skid-steer vehicles. The A100 is 0.860m long by
accurately. In order to carry out this task, the robots eota-60°m wide with a datasheet mass of 35kg and a maximum
payload of 40kg. The A200 is 0.990m long by 0.670m wide
The authors were at the University of Minnesota while thisrtkvavas

performed. 200 Union St. SE KHKH 4-192, Minneapolis, MN, 554JSA, lwww.oceanscience.com
Emails: {isler, noori, plonski, arenzag|, tokekar, jvanii@cs.umn.edu 2www.clearpathrobotics.com



our work, we studied three models: stationary, stochastic a

adversarial. In the stationary model, the target does neemo

N and thus the search problem can be reduced to a coverage
YRR \in problem. In the stochastic model, the target moves based on

a probability distribution. Thus, the motion is independen

Fig. 2. (Left) The tag which is implanted in fish. The tag is apgmately of the SearChe.r’S Strate_QY- Finally, in the adyersgrlal ehod

5 cm in length, with a 30cm antenna trailing off (2 inches, 2hes). the target actively avoids capture by moving in the best

(Middle) The antenna is approximately 61 cm in diameter (&hes). The possible way against any search strategy. Given the above

tags transmit an uncoded radio pulse once per second in ti%e MMz id . defi h h bl foll

range. The antenna is direction-sensitive, meaning theeped strength considerations, we define the search problem as follows.

of the signal is dependent on the orientation of the anteefaive to the . .
direction to the tag. In this way, it is possible to estimdte bearing to Problem 1 (SearCh-) Given the environment and the target

the transmitting tag. (Right) A coarse sampling of the sigrteength. The motion models, design a search strategy such that the target

horizontal axis is the pan angle and the vertical is the medssignal 5 detected in minimum time.

strength. Least squares estimation of a sine curve typigaibvides the

best estimates. In the following, we present an overview of our results
in finding the common carp for each of the three motion

odels.

pproach 1: Stationary Target

It is possible that the fish do not move much compared

nection from a laptop computer. The boats are controlle ith the detection range and robot speed. This happens,

with Arduino Mega2560 microcontroller boards that commu:°" example, when the fish aggregate in the winte}. [

nicate with the motor controllers, servos, and sensorsasad In this case, we can reduce the search problem to that of

in turn commanded by laptop computers over direct EthernfépdIng a stationary iject. In the worst case, the robpt must
cover the entire environment. To reduce the search time, we

using UDP. Self-localization is achieved through the usa of. . .
GPS unit and a compass, filtered with an Extended Kalmamcorporate domain knowledge that allows us to restrict the
' earch to only those regions within the lake which are likely

Filter. On_ the rovers, Wh_eel odometry is useq as well. A o contain the fish (Figure 3(a)). We assume that there is a
software is compatible with the Robot Operating System. C UV : .
path between any two points in any pair of regions.

Our boats can be configured with a forward-looking, 0 | hi doft : st
single-beam sonar unit that is used for obstacle avoidance. ur generaiapproach I1s composed ot o s EpsHirst,
The sonar unit is an Imagenex 852 Digital Echo Sou?']derWe compgte a tourr, V|s[t|ng a}ll regions gxactly_ once. The
with 10 degree beam width and maximum range of 50 our 7 defines the order in which the regions will be visited.

L N . - : he (possibly same) points at whiehintersects a region
Navigating to a destination while avoiding obstacles |s-nor} . )
s . . . for the first and the last time are termed as the entry and
trivial with our sensor, because each sonar reading previde .~ ~. . :
exit points for a region. In the case where the regions appear

only a small glimpse of the map of the environment. In long the perimeter of a simply-connected lake, the optimal
[?], we addressed this problem in an online competitivg1 g P Py ' P

framework. The competitive ratio between the online styate order inr follows the perimeter (Lemma 1 ir?. We can

and the optimal offline strategy is shown to be Cons,[al_gompute the entry and exit points by discretizing the region

with a datasheet mass of 50kg and a maximum payload
75kg. Both rovers can travel at 1 m/s.
The rovers are directly controlled with a serial port con-

when the obstacle is a rectangle perpendicular to the desir gﬁgoil?”eosl ig(:n;T'Qr%edﬁgir;ﬁep:ﬁgrg:gg}'?g'ﬁ;{:(ljs can be
direction of travel, or logarithmic in the width of the obsla poly ’

if the shape is unknown. The algorithm is validated with real In the second step, we compute a separate coverage tour

experiments in which the boat successfully navigates dourfcfonsstlng. of boustrophedon paths W'th'n each region. The
a large obstacle. Inal tour is constructed by augmenting the coverage tours

The boats and rovers can also be equipped with 50I8F each region to the corresponding entry and exit points in

panels to increase their system lifetime. The resultintesys 7. This algorithm computes a tour whose length is no more

must have an ongoing estimate of expected solar power VSR % FAER TELE SR RE R ey o
the working environment, and include this information ai Y 9

: X ake Phalen, MN, USA. The input regions for one such trial
part of a global path planner, as shown in Section V. are shown in Figure 3(a). A sensing range of 50m was used

I1l. SEARCH to generate the boustrophedon paths. The actual trajectory

The first phase of the carp monitoring task is to detect th@ecuted by the robot is shown in Figure 3(b) which covered
fish as quickly as possible. A searcher (either the boat gr6km in about 87min.
a rover) detects a target if the target is within the detectio®PProach 2: Adversarial Target _
range of the antenna. The detection range varies i@mto Next we address the motion of the target. One possible
100m depending on the depth of the fish and the orientatioffotion model is to treat the target as an adversary which

of the antenna with respect to the fish. In order to formalizBCtIVely tries to avoid the searcher. An adversarial target
the search task, a model of target's motion is needed. fVare of the search strategy and it can plan the best possible
strategy to escape. Even though a perfectly adversargattar

Swww.imagenex.com is unlikely in many real-world applications, this analysis



On the line segment we envision two detection criteria that
we refer to as thano-crossingand thecrossingconditions.
In the no-crossing model, the searcher can detect the target
continuously as it is moving along the edges. Since the
energy and the time budgets are limited, the best strategy
is to move to the right for an optimum number of steps,

' T e W namely Nr, and then spend the rest of the time budget
(a) Coverage regions (b) Actual path executed by the ~ Waiting atz = Ng. In [?], we computed the value aVg
robot. that maximizes the total capture probability.
Fig. 3. Coverage experiment conducted at Lake Phalen, MM. (& The A more challenging detection criterion is the crossing

inpgt regions,(b) the_actual_path foII_owed by the_robot. Th(=T robot traveledmodel where detection occurs onIy at the discrete set of

a distance of 5.6km in 87min. Locations where signals frodioréags were -

detected are marked, along with their frequencies. Frem [ nodes. If the players cross each other by taking the same edge
in opposite directions, the target is not detected (Fig(ag)4

This condition takes into account the observation that as th

remains important because it can represent a worst cd¥@al is moving, the measurements are not reliable due to the

scenario. A capture strategy against an adversarial targéise interference fromkth?nmotors. We show that the best
(if it exists) guarantees finite capture time for all pogsibl Strategy is of the forniZ"S)™ — move right fork steps and
trajectories of the target. stop for one step then repeat. The paramételepends on

The search problem corresponding to the adversarial tar QF time and the sSlzé of _the e_nwronment. In most cases, the
is known as the Princess and Monster Game. In this ga e,St number of right actions is twa][
the players are in a dark room, i.e., they cannot observe The problem becomes much more complex in a square
each other unless the monster captures the princess. Thigd because of the larger state space. P e pro-
model is applicable because our sensing radius is likelyeto posed search strategies and compared their mean capture
bigger than the fish's. This game was proposed by Isacs [probabilities. See Figure 4. In this figure, in the random
and solved by Gal7] who presented a randomized strategywalk strategy the searcher moves in the same way as the
to find the evader in time proportional to the area of théarget. The adversarial-based path is the strategy deskcrib
environment. In P], we adapt this strategy for a squarein Section Ill. In the random direction strategy, the search

environment of side L, which yields a simplified analysis. picks a random, uniformly-distributed point on the bourydar

The search strategy is divided into rounds. Each rourf@ move toward. When the searcher reaches the point it
has two parts which take exactlysteps. The searcher startsfepeats this process. In the belief-based strategy, at each
on the left boundary of the environment. At the beginningeration the maximum of the belief is identified and the
of each round, a row is randomly selected with a uniforngearcher moves toward its direction. Among these strategie
distribution and the searcher travels to this row and waitée best strategy is the belief-based strategy. Integigtithe
until L total steps have passed. In the second part, it sweelpglief based strategy performs better than the game thieoret
the entire selected row. The searcher repeats this strategfjution assuming that the target is adversarial (Sectipn |
until a capture occurs. We show that the capture time dfinding the structure of the optimal strategy by approaghin
this strategy isO(A) where A is the area of). It is worth  the problem as a Partially Observable Markov Decision
mentioning that we do not require any assumptions on tH&rocess formulation is our ongoing work.
players’ velocity, and the same result holds for a targettvhi
can move faster than the searcher as long as the searcher’s
detection range is greater than the target’s.

Approach 3: Random Walking Target Modeling the fish as
an adversarial target can be very conservative. More dfticie
strategies with less expected capture time can be designed
by using probabilistic models for the target's motion. In rgetted) ety
the absence of any other information, a natural movement searcher(t) . Searcher(t+1)
model is the simple random walk where the target movesto &—@—6—6—=0
its neighboring regions with equal probability. We studied (a) (b)
two scenarios: When the random walker moves on a Iin[_eI (a) A crossin o o .

. . .4 g event is illustrated: at time the searcher is at
segment between a set of discrete nodes, and when it moYl@géei, the target is at nodé + 1, and they move toward each other by
in a square grid. The searcher’s task is to find the targeiing the same edge. Fror][ (b) Behavior of the mean capture time as

by moving onto its node. The players do not observe eaéhfunction of the number of node¥ for five different searcher strategies:
’ ving as a random walk, boustrophedon path, the gameetieatrategy

Other_u.nt” thiS. happens. HOW should the SearCh_er mov%ﬁiﬂ the adaptive belief-based strategy based on the balietién which
Surprisingly this problem is open. In the following, wemoves toward the max of the belief. Frof.[

summarize our results for both the one-dimensional and the
two-dimensional random walker.




IV. TRACKING to exchange measurements by moving to within a distance

The previous section discussed methods for detecting the'l® communicate the resuits of their measurements..What
fish. Since radio tags can sometimes be detected from a Iolr?gth? optimal sequence of measurement and communication
distance, detection alone does not provide a good estimagiations for each robc_m, Su = {51, ’SW‘“} such that_
of the fish's location. To provide a precise estimate, th@" robots _haveacon5|stent final target estimate and thd fina
robot can use bearing measurements. The robot can rotate {@et estimate has bounded expected error?
antenna and sample the signal strength at each orientationwe consider two ways of solving the problem: Offline and
With enough samples, we estimate the orientation with th@nline.
maximum recieved signal strength, which is roughly th(?\pproach 1: Offline Analysis

bearing to the radio tag. See Figure 2. Since the fish tendThe offline formulation assumes that the true target lo-
to aggregate in large, stationary groups for long periods, &ation is known. This assumption is not valid in practice.
individual target is considered static during localization  However, we use the solution to analyze the performance of
practice, the slow motions of the target are confined to gnjine strategies. In the offline setting, the goal is to lbun
small area, and are considered part of the measurement nojg expected error of the target estimate, given the known
This brings us to our second problem: sensor noise, sensor locations, and target location. Thécme

Problem 2 (Active Localization) As quickly as possible, commonly used in this setting is the Fisher Information
construct an initial estimate of the fish’s location and usé/atrix (FIM). The inverse of the FIM is called the Cramer
bearing measurements to locate its position to within agiveR20 Lower Bound, and gives the expected error of the target
uncertainty bound. estimate around the true target location (the covariance).

In [?], we prove the geometric structure for the optimal

As a first step, we establish an initial estimate. ), [ offine solution for two cooperating robots. The optimal
we showed how a Gaussian prior for each target can Rgution can then found using a simple gradient descent
constructed by searching for the boundary of the region @farch. Subsequently, the two-robot solution is extended t
detection: a roughly circular area around each tag fromhvhignclude communication constraints so that both robots can
the transmissions can be reliably detected. The centers @hdezvous and form a joint estimate of the target location.
these circles are used as the initial target locatioand each Finally, the same solution is extended to include an arbi-
circle becomes the three-sigma boundary of the covarianggary number of robots without increasing the computationa

The robot can now begin the process of choosing gomplexity. These results are summarized in the following
sequence of sensor locatiofs= {si,- - ,s,} from which  theorem.

it will collect bearing measurements and localize the terge ) ) . o
A target is considered localized if the posterior covar@anc!heorem 1(Optimal Offline Active Localization) There ex-

is sufficiently small. Thus, the objective of the localipati 1St an algorithmA which produces a sequence of measure-

step is to take measurements such that the eigenvalues of fa@nt locations forN' robots with respect to a known target
covariance are reduced to below a threshold. location such that when all measurements are combined, the

As an example, to locate a target to within typical handfollowing are satisfied. Let the final covariance around the

held GPS precision (approximately 5 meter expected errofjué target location bev.
we would constrain the covariance to have the square roote The maximum eigenvalue &f is less than the desired
of both eigenvalues smaller than 5. amount.

Note that the optimal number of measurements for eachs WhenN = 2/ for a non-negative integet, the cost of
robot as well as the positions of these measurements is un- A is optimal.
known. Additionally, the optimal sequence of measurements « WhenN = 2% + 1 for a positive integer, the cost of
must consider the cost per measurement. If the cost is high A is less thar2 times optimal.
relative to the cost to relocate, then we expect the optimal « When the robots have distance-based constraints on
algorithm to travel to very informative measurement loca-  their communication, the cost od is less than twice
tions. But, if the cost to relocate the robots is high, we expe the optimal cost.
the robots to move very little and take many measurements.e The computational complexity of computing thé
Communication is a further complication because any two  robots’ measurement and communication locations is
robots must be nearby to share their measurement values, independent ofV.
form a consistent estimate of the target location, and plan
the next measurement step(s).

We can concisely state this multi-robot active localizatio
problem as follows.

The algorithm is presented in?][ Critically, the cost
bounds in the previous results incorporates the velocity
of the robots, communication constraints between them,
measurement time, and measurement uncertainty to produce
Problem 3 (Active Bearing-Based Localization)V robots a baseline comparison for the cost of any bearing-only activ
travel with velocityv, take timet,, to take noisy bearing localization algorithm.

measurements of the target, and have Gaussian sensorApproach 2: Online Analysis

noise with variancer2. Furthermore, two robots must meet In the online setting, the measurements collected at each



changing A,

v

W : x(m) m ) x(m)

Fig. 5. Optimal two-robot trajectories for various systeargmeters. In all figures the robots started at locati®rd) and the true target was &b, 0).
Communication constraints were only considered in the igpt figure and all other parameters were held fixed. Top-kfte {.1, 1, 3, 8}. Top-right:

re € {2.1,1.1,.1}. Whenr. = .1, the robots rendezvous after measuring. When= 2.1 the output is the same as the result from unbounced
Bottom-right: ¢t,,, € {.01,.1,1} Note that as,,, increases, the optimal algorithm travels to more informeatocations so that fewer measurements are
required. Bottom-lefto € {.1,1,4,8}. Note that changing the sensor noise produces the samé affeequiring more information (compare left two
figures). From 7).

location are used to update the target estimate. Then, swdguipped with solar photovoltaic panels which can harvest
sequent measurement locations are planned with respectetergy from the environment.
the new estimate. Ir7], a single robot algorithm is provided .
. . . . . . ___A. Power to Drive
which can localize a single target using only a prior estemat = . _ _
of its location. The cost of the algorithm was bounded, and First, to understand the structure of optimal trajectories
compared to the optimal offline algorithm. An example ofconsider the problem when the robot is car-like (with min-
the trajectories and measurement locations for two rotsotsimum turning radius but no turning cost), the path is fixed,
shown in Figure 5. such as a road or a track, and we only need to find the optimal
To extend to multiple robots, the optimal offline algorithmVelocity profile. There is a constraint, however, that et
was shown to be adaptable to an online setting using resuRrtions might have different maximum speeds, usually from
also presented in?[. We show that any online algorithm traction constraints while turning at a particular radiumsao
with respect to the target estimate can be used to buildf@llows:

near-optimal online algorithm. In fact, the resulting o®li  pyoplem 4 (Velocity Optimization) Let the path that a car-
algorithm is shown to be within a logarithmic factor of thejike robot must traverse be  consists ofV segments which
optimal cost. Thus, the previous result can be extended fge straight lines or curves. There is a separate velocity
an online strategy which is proven to locate the target up t§ound for each segment. Find the optimal velocity profile to
a desired uncertainty level at near-optimal cost: minimize the power consumed by the robot while traversing

Theorem 2 (Online Adaptation) Let A be an offline algo- 7
rithm which produces a sequence of measurement locations|n [?] this problem is solved in closed form given a

for V robots with respect to a known target location. Therjetailed electric motor model and a single segment. When
O(log(A)) calls to A are required to localize a target in an there are multiple segments, the optimal profile can by found
unknown |Ocati0n, when the final COVﬁrian@,mUSt have through dynamic programming by discretizing the Ve|octty a
both eigenvalues less thap Let the cost ofd be O(C*),  the transition points between segments. An example optimal
whereC™ is the cost of the optimal algorithm. Then the costelocity profile is shown in Figure 7(a). The strategy is
to localize a target in this way is a logarithmic factor worseexperimentally calibrated to the motor of a real robot car,
than optimal. Or,O(C* log(A)). and optimal velocity profiles are planned and executed.

The online algorithm was tested in field trials on Lakes NOW consider the more general case, where the robot only
Staring and Gervais and on the University of anesotgeeds to reach a particular destination and it is free totchar

campus. One such trial is shown in Figure 6. its own path:

Problem 5 (Trajectory Optimization) Given start and goal
V. ENERGY poses, compute a pathand a velocity profile along this path
for a car-like robot traverse from the start to the goal while

When mobile sensors must operate outdoors, their system . =~ " . . .
minimizing its power consumption. The velocity at all times

lifetimes are often severely constrained by the maximum . : : : .
) . mélst obey a traction constraint which restricts the maximum

energy of their batteries. Therefore, energy awareness an . : .

AN . . . speed as function of the turning radius.

optimization is critical for these settings. In this sentiwe

present methods for planningow a mobile robot should In [?] this problem is solved for the same motor model

make its way to a sensing position while minimizing itsthrough dynamic programming over discrete positions and

energy cost. This is a task with two parts: First we willvelocities. The solution is optimal, subject to the resolut

examine how a mobile robot should navigate to a position iof discretization by fixed-curvature paths. The solution is

a way that minimizes the energy expended by its motorsften quite different from selecting first the shortest fieles

Then we will examine how the robot should navigate tgath and then optimizing the velocity; frequently a longer

maximize its battery life in situations when the robot ispath can result in lower overall energy cost, by allowing the



Fig. 6. Experiment results from Lake Staring, MN, USA usiag trobots and the algorithm described 1.[(a): The experiment area. The true target
(and camera in7]) were placed on the docks near the bottom right corner l{idbevith a star). The robots began near the top-middle I&ir¢b): The
two measurement steps produced the dark paths shown, wiumments taken at the white squares. The final actual taimtgrwas the inner blue
ellipse. (c): More execution details. The solid red circles are the poimtere the robots exchanged information and the measutdatations are again
given as white squares. The figure covers an area approxnzaem vertically by 150m horizontally. Fron?].
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Fig. 7. Optimal unlimited velocity profile compared with opal profile L L
limited to less than 1 m/s, and optimal trajectory compardith whortest )
Dubin’s path. When the robot turns less sharply, it can tratea higher (c) Clear Sky Solar Trials

speed, and reach its destination with less energy consomgtrom P]. . _ ) ) .
Fig. 8. The McNamara Alumni Center testing environment, &adissian
Process Regression estimates of the solar intensity athvessnvironment

. .. on a cloudy and clear day. The cloudy estimate includes #iritig path
robot to traverse it at a more efficient speed. An example tgat the robot drove along to form its estimate. The cledmese includes

shown in Figure 7(b). planned and executed trials where the robot attempted tomziaits energy
cost to reach the destination in the specified amount of tgiven the solar
B. Solar Power Estimation map. From ?].

Now, consider energy that can be collected from the sun. If

the field of S(.)I‘T” power s stationary across the_ state Spﬁ-jlcec%allenging to reconstruct without the use of sophistitate
the robot, minimizing the motor current is sufficient to also . . . X
ensors. An interesting problem, therefore, is the foltaywi

maximize the battery of the robot after the move. However, I?Ian a robot with minimal sensors estimate the solar power
the field is complex, different paths to the destination rhigh b

. > It will receive if it travels along a candidate path? A natura
collect different amounts of solar power. In some cases it IS .

even worthwhile for the robot to deviate far from the Shdrtesmmlmally-sensmg robot is one which can measure only its

o . ) - : own position, and how much solar power it receives as it
path and wait in the sun if there is sufficient time. . .
. . . moves. In this setup we estimate future measurements of
For the robot to plan the energy-optimal path, it requires an .
%plar power at positions from past measurements of solar

accurate map of the solar field. Often this field is estimate "
S ) L ower at positions. The problem can be formally stated as
for clear conditions by first estimating the 3D geometry of

the environment in high detail then performing raytracingO"OWS:
from the computed position of the sun at any time. HowProblem 6 (Solar Estimation) Let the prior points visited
ever, when the geometry is not known a priori, it can béy the robot beX = {xi,x3, -+ ,x,}, where eachx; is
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Fig. 9. The Lake Como testing environment, the estimate@idvound heightmap constructed from observations of s@aepat positions, an example
solar map estimated for 09:30 CDT from the constructed heighs, and by using GP regression. Frdth [

because it ignores the change in solar intensity and sun
25 ¢ ? position during the day.
* Approach 2: Gaussian Process Classification

On a sunny day, almost all positions can be classified as
sunny or shaded. Then both the shadows and the solar
intensity can be adjusted during the day for the position
of the sun, treating the shadow map as a spatiotemporal
Gaussian Process. This approach is detailed?|nIf has

15

Current (A)

0 " P 1 e 1 10 the advantage that it can provide good estimates of shadow
Hours After Midnight (CDT) maps with very little information about the full shapes of th
(a) Alumni Center shadows that have been partially observed.
21 Approach 3: Environment Reconstruction

If there is sufficient information about the shadows that
have been cast, it is possible to reconstruct the envirotahen
geometry of the objects that cast the shadows?|rtHis is
done by modeling the shadow casting objects as a terrain,
with an upper bound and a lower bound on the height of the
terrain at each discrete square. The accuracy of the estimat
environment can be improved with a prior estimate of the
‘ ‘ | | | | | | position of the objects, such as a satellite image of the

8 8.5 9 9.5 10 10.5 11 115 12 boundary Of a Iake
Hours After Midnight (CDT) ) . .
(b) Lake Como All three approaches to solar estimation were attempted
at the McNamara Alumni Center, a field at the University
Fig. 10. The measured solar current for our trials plottedired time ~ of Minnesota in Minneapolis that contains scattered trees.
of day, with best fit curves estimating the current that carcdléected in - 5qdition. Gaussian Process Classification and Environment
the sun and in the shade. There are three curves showing ttheiesfor ’ . d K lake i
leaving out each of the data sets. At the Alumni Center theetlourves ReconSt_rUCt'on were attempte. at Lake Cc_>mo, a a e. in St
agree almost perfectly, but this is not the case at Lake Cdihe.average Paul, Minnesota. At the lake it was possible to eliminate
cross validation error at the Alumni Center was 0.0660 aemeand at  ~gndidate positions of shadow casting objects when usiag th
Lake Como it was 0.1301 amperes. For planning purposes, stireated .
magnitude is close to the true magnitude. Fra [ reconstruction method. All three_ methods produced aceurat
solar maps when there was sufficient coverage. Environment
reconstruction accurately placed shadow-casting objests
ghown in Figure 9. Quantitatively, GP regression was suc-
cessfully used to plan solar-aware paths, as shown in Fig-
ure 7. Estimates of shadow maps from GP classification and
reconstruction have good cross-validated performancdoas
the estimates of solar power in the sun and shade across the
Approach 1: Gaussian Process Regression day (shown in Figure 10).

A first approach to estimate the solar field is by approxi-
mating it as a continuous spatial Gaussian Process, &.in [
This approach has the advantage that it is straightforward t Finally, there remains the problem of how to find the
implement, and it works equally well for cloudy and cleadowest energy cost path given a power-to-drive model and
days. However, it is most useful over short time scales solar map. The problem setup often requires a time limit

Current (A)

a vector containing the position and time of the visit. Th
robot records the solar powey; at each point to form the
set of measuremenfg. Estimate solar powep* that will
be received at points’™*.

C. Planning Solar-Aware Paths



Solar - Expected | Actual Expected Actual Control . Actual
Trial Duration Solar Solar Net Cost Net Cost Trial Duration Net Cost
A 401 s 7,025.5J | 6,974.1 J 577.16 J 744.6 J F 45 s 6,295.4 J
B 400 s 6,606.6 J | 6,828.6 J | —3,265.9J | —3,256.7 J
c 104s | 1,1483J | 611.263 | 879.99J | 2,253,4 G 191s | 2,881
D 104s | 1,6000J | 1,297.6 J| 2,907.3J | 3,480.3J
E 104s | 1,600.9J | 1,156.2J3 | 2,907.3J | 2,822.5J H 30.4s | 3,5304J
TABLE |

PATH EXECUTION RESULTS ON THE LEFT SIDE OF THE TABLE ARE THE FIVE PLANNED AND EXECUTED OLAR-AWARE PATHS, SORTED BY START
POSITION AND END POSITION ON THE RIGHT SIDE OF THE TABLE ARE THE THREE SHORTEST PATHS EXEXTED WITH NO SOLAR PANEL, FROM THE
SAME START AND END POSITIONS AS THE TRIALS DIRECTLY TO THEIR EFT. OBSERVE THAT, AS EXPECTEDR THE SOLAR POWERED ROBOT PERFORMS
BEST WHEN IT IS ALLOWED TIME TO DEVIATE FROM THE SHORTEST PATHAND CHARGE ITS BATTERY IN THE SUN FROM [7].

to reach the destination, otherwise a solar-powered robot
might have unbounded energy gains. This problem wagy;

addressed in7], using a simplified power-to-drive model
for a differential drive rover. The path is found through

spatiotemporal dynamic programming. The power gainedzl

by the rover was compared with the power gained by a
rover without a panel that traveled straight to the destimat

The results of the experimental trials are shown in Table I.[s]
These results demonstrate that it is possible for a solar-
powered robot with minimal sensors to learn enough abou
its environment to plan efficient paths.

VI. CONCLUSION

2

(5]
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