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Abstract— We describe our efforts on building a robotic
system for detecting and tracking radio-tagged invasive fish
using teams of autonomous ground and surface vehicles. In
addition to system building and field experiments, our efforts
clustered around three fundamental problems: (1) Search: how
to find the target as quickly as possible, (2) Active localization:
how to actively choose measurement locations to accurately
estimate target locations, and (3) Long-term autonomy through
energy-efficiency and harvesting. We present specific problem
formulations and a summary of our results so far. We conclude
the paper with a discussion on our progress and next steps.

I. I NTRODUCTION

Habitat monitoring is an application domain where
robotics can have a huge positive impact. Robots equipped
with a wide variety of sensors can monitor large areas for
extended periods of time, and provide valuable data for
scientists, policy makers and other stake-holders. At the same
time, it is an exciting research frontier for robotics. Numer-
ous fundamental robotics problems such as coverage, search
and tracking arise as components of habitat monitoring tasks.
In order for robots to deliver the promised impact, these
tasks must be executed in unstructured and often dynamic
settings. For long term operation, issues of robustness and
energy management must be addressed.

Since 2010, we have been working on building a robotic
sensor network to monitor Common Carp, an invasive fish
infesting lakes across the Midwest. Biologists surgically
insert radio tags in the fish and manually track them to
study their behavior and find aggregations. The tracking
process is performed throughout the year by searching for
signals emitted from the tags using directional antennas [?].
This is a difficult and labor intensive job, especially in
the winter. The primary goal of our project is to build a
autonomous system which can track radio-tagged fish. We
use autonomous surface vehicles in the summer and switch
to ground vehicles in the winter when lakes freeze.

From a robotics perspective, we focus on three sets of
problems. The first task is to find the fish. Radio tags have
limited ranges which can drop to 10-20 meters depending on
the depth of the fish and the strength of the tags’ batteries.
Therefore, when the robots are launched, they may not hear
the signal. How should they move so that they establish
contact with the signal as quickly as possible? This is the
searchtask. Once the fish are found, they can be localized
accurately. In order to carry out this task, the robots rotate
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Fig. 1. (Left) Two robotic boats tracking invasive fish in Minnesota lakes.
(Right) Rovers used in winter experiments when the lakes freeze over.

their antennas and obtain bearing measurements which are
then used to estimate fish locations. The uncertainty in the
estimates is a function of the sensor/target geometry. The
second task is to choose measurement locations so as to
obtain high quality estimates. Thisactive-localizationtask
is challenging because the measurement locations must be
chosen in an online fashion as new information becomes
available. Finally, in the third task, we focus onenergy
efficiency. As a building block for other tasks, we study the
problem of moving from pointa to pointb in an energy effi-
cient fashion. In addition, our robots carry solar panels sothe
notion of efficiency involves not only energy consumption
but also potential gains attained from harvesting.

In this paper, we present an overview of our progress so
far. In addition to tackling underlying algorithmic problems,
this project challenged us to implement our algorithms and
test them in field conditions. We present our main results
and report findings from field experiments. We conclude the
paper with a reflection of where we are and a discussion
on the challenges and opportunities for robotics research in
habitat monitoring.

II. SYSTEM OVERVIEW

We execute our carp tracking algorithms on robot boats
in the summer and robot rovers in the winter which drive
along the frozen surface of the lake. In this section we will
present the details of these systems.

Our boats are built on the OceanScience Q-Boat 1800D1.
The Q-Boat is 1.8m long, with a cruising speed of about 1
m/s and a turning radius of 5m. Our rovers are built on the
Clearpath Husky A100 and A2002, which are both rugged
and heavy skid-steer vehicles. The A100 is 0.860m long by
0.605m wide with a datasheet mass of 35kg and a maximum
payload of 40kg. The A200 is 0.990m long by 0.670m wide

1www.oceanscience.com
2www.clearpathrobotics.com
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Fig. 2. (Left) The tag which is implanted in fish. The tag is approximately
5 cm in length, with a 30cm antenna trailing off (2 inches, 12 inches).
(Middle) The antenna is approximately 61 cm in diameter (24 inches). The
tags transmit an uncoded radio pulse once per second in the 47.9 MHz
range. The antenna is direction-sensitive, meaning the perceived strength
of the signal is dependent on the orientation of the antenna relative to the
direction to the tag. In this way, it is possible to estimate the bearing to
the transmitting tag. (Right) A coarse sampling of the signal strength. The
horizontal axis is the pan angle and the vertical is the measured signal
strength. Least squares estimation of a sine curve typically provides the
best estimates.

with a datasheet mass of 50kg and a maximum payload of
75kg. Both rovers can travel at 1 m/s.

The rovers are directly controlled with a serial port con-
nection from a laptop computer. The boats are controlled
with Arduino Mega2560 microcontroller boards that commu-
nicate with the motor controllers, servos, and sensors, andare
in turn commanded by laptop computers over direct Ethernet
using UDP. Self-localization is achieved through the use ofa
GPS unit and a compass, filtered with an Extended Kalman
Filter. On the rovers, wheel odometry is used as well. All
software is compatible with the Robot Operating System.

Our boats can be configured with a forward-looking,
single-beam sonar unit that is used for obstacle avoidance.
The sonar unit is an Imagenex 852 Digital Echo Sounder3,
with 10 degree beam width and maximum range of 50m.
Navigating to a destination while avoiding obstacles is non-
trivial with our sensor, because each sonar reading provides
only a small glimpse of the map of the environment. In
[?], we addressed this problem in an online competitive
framework. The competitive ratio between the online strategy
and the optimal offline strategy is shown to be constant
when the obstacle is a rectangle perpendicular to the desired
direction of travel, or logarithmic in the width of the obstacle
if the shape is unknown. The algorithm is validated with real
experiments in which the boat successfully navigates around
a large obstacle.

The boats and rovers can also be equipped with solar
panels to increase their system lifetime. The resulting system
must have an ongoing estimate of expected solar power over
the working environment, and include this information as
part of a global path planner, as shown in Section V.

III. SEARCH

The first phase of the carp monitoring task is to detect the
fish as quickly as possible. A searcher (either the boat or
a rover) detects a target if the target is within the detection
range of the antenna. The detection range varies from10m to
100m depending on the depth of the fish and the orientation
of the antenna with respect to the fish. In order to formalize
the search task, a model of target’s motion is needed. In

3www.imagenex.com

our work, we studied three models: stationary, stochastic and
adversarial. In the stationary model, the target does not move
and thus the search problem can be reduced to a coverage
problem. In the stochastic model, the target moves based on
a probability distribution. Thus, the motion is independent
of the searcher’s strategy. Finally, in the adversarial model,
the target actively avoids capture by moving in the best
possible way against any search strategy. Given the above
considerations, we define the search problem as follows.

Problem 1 (Search). Given the environment and the target
motion models, design a search strategy such that the target
is detected in minimum time.

In the following, we present an overview of our results
in finding the common carp for each of the three motion
models.
Approach 1: Stationary Target

It is possible that the fish do not move much compared
with the detection range and robot speed. This happens,
for example, when the fish aggregate in the winter [?].
In this case, we can reduce the search problem to that of
finding a stationary object. In the worst case, the robot must
cover the entire environment. To reduce the search time, we
incorporate domain knowledge that allows us to restrict the
search to only those regions within the lake which are likely
to contain the fish (Figure 3(a)). We assume that there is a
path between any two points in any pair of regions.

Our general approach is composed of two steps [?]. First,
we compute a tour,τ , visiting all regions exactly once. The
tour τ defines the order in which the regions will be visited.
The (possibly same) points at whichτ intersects a region
for the first and the last time are termed as the entry and
exit points for a region. In the case where the regions appear
along the perimeter of a simply-connected lake, the optimal
order in τ follows the perimeter (Lemma 1 in [?]). We can
compute the entry and exit points by discretizing the region
boundaries and using dynamic programming. This can be
done in polynomial time because the order is fixed.

In the second step, we compute a separate coverage tour
consisting of boustrophedon paths within each region. The
final tour is constructed by augmenting the coverage tours
of each region to the corresponding entry and exit points in
τ . This algorithm computes a tour whose length is no more
than a constant factor of an optimal tour [?].

We evaluated this search algorithm through field trials at
Lake Phalen, MN, USA. The input regions for one such trial
are shown in Figure 3(a). A sensing range of 50m was used
to generate the boustrophedon paths. The actual trajectory
executed by the robot is shown in Figure 3(b) which covered
5.6km in about 87min.
Approach 2: Adversarial Target

Next we address the motion of the target. One possible
motion model is to treat the target as an adversary which
actively tries to avoid the searcher. An adversarial targetis
aware of the search strategy and it can plan the best possible
strategy to escape. Even though a perfectly adversarial target
is unlikely in many real-world applications, this analysis
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Fig. 3. Coverage experiment conducted at Lake Phalen, MN, USA. (a) The
input regions,(b) the actual path followed by the robot. The robot traveled
a distance of 5.6km in 87min. Locations where signals from radio-tags were
detected are marked, along with their frequencies. From [?].

remains important because it can represent a worst case
scenario. A capture strategy against an adversarial target
(if it exists) guarantees finite capture time for all possible
trajectories of the target.

The search problem corresponding to the adversarial target
is known as the Princess and Monster Game. In this game,
the players are in a dark room, i.e., they cannot observe
each other unless the monster captures the princess. This
model is applicable because our sensing radius is likely to be
bigger than the fish’s. This game was proposed by Isaacs [?]
and solved by Gal [?] who presented a randomized strategy
to find the evader in time proportional to the area of the
environment. In [?], we adapt this strategy for a square
environmentΩ of sideL, which yields a simplified analysis.

The search strategy is divided into rounds. Each round
has two parts which take exactlyL steps. The searcher starts
on the left boundary of the environment. At the beginning
of each round, a row is randomly selected with a uniform
distribution and the searcher travels to this row and waits
until L total steps have passed. In the second part, it sweeps
the entire selected row. The searcher repeats this strategy
until a capture occurs. We show that the capture time of
this strategy isO(A) whereA is the area ofΩ. It is worth
mentioning that we do not require any assumptions on the
players’ velocity, and the same result holds for a target which
can move faster than the searcher as long as the searcher’s
detection range is greater than the target’s.
Approach 3: Random Walking Target Modeling the fish as
an adversarial target can be very conservative. More efficient
strategies with less expected capture time can be designed
by using probabilistic models for the target’s motion. In
the absence of any other information, a natural movement
model is the simple random walk where the target moves to
its neighboring regions with equal probability. We studied
two scenarios: When the random walker moves on a line
segment between a set of discrete nodes, and when it moves
in a square grid. The searcher’s task is to find the target
by moving onto its node. The players do not observe each
other until this happens. How should the searcher move?
Surprisingly this problem is open. In the following, we
summarize our results for both the one-dimensional and the
two-dimensional random walker.

On the line segment we envision two detection criteria that
we refer to as theno-crossingand thecrossingconditions.
In the no-crossing model, the searcher can detect the target
continuously as it is moving along the edges. Since the
energy and the time budgets are limited, the best strategy
is to move to the right for an optimum number of steps,
namely NR, and then spend the rest of the time budget
waiting at x = NR. In [?], we computed the value ofNR

that maximizes the total capture probability.

A more challenging detection criterion is the crossing
model where detection occurs only at the discrete set of
nodes. If the players cross each other by taking the same edge
in opposite directions, the target is not detected (Figure 4(a)).
This condition takes into account the observation that as the
boat is moving, the measurements are not reliable due to the
noise interference from the motors. We show that the best
strategy is of the form(RkS)m – move right fork steps and
stop for one step then repeat. The parameterk depends on
the time and the size of the environment. In most cases, the
best number of right actions is two [?].

The problem becomes much more complex in a square
grid because of the larger state space. In [?], we pro-
posed search strategies and compared their mean capture
probabilities. See Figure 4. In this figure, in the random
walk strategy the searcher moves in the same way as the
target. The adversarial-based path is the strategy described
in Section III. In the random direction strategy, the searcher
picks a random, uniformly-distributed point on the boundary
to move toward. When the searcher reaches the point it
repeats this process. In the belief-based strategy, at each
iteration the maximum of the belief is identified and the
searcher moves toward its direction. Among these strategies
the best strategy is the belief-based strategy. Interestingly, the
belief based strategy performs better than the game theoretic
solution assuming that the target is adversarial (Section III).
Finding the structure of the optimal strategy by approaching
the problem as a Partially Observable Markov Decision
Process formulation is our ongoing work.
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Fig. 4. (a) A crossing event is illustrated: at timet, the searcher is at
node i, the target is at nodei + 1, and they move toward each other by
taking the same edge. From [?]. (b) Behavior of the mean capture time as
a function of the number of nodesN for five different searcher strategies:
moving as a random walk, boustrophedon path, the game-theoretic strategy
and the adaptive belief-based strategy based on the belief function which
moves toward the max of the belief. From [?].



IV. T RACKING

The previous section discussed methods for detecting the
fish. Since radio tags can sometimes be detected from a long
distance, detection alone does not provide a good estimate
of the fish’s location. To provide a precise estimate, the
robot can use bearing measurements. The robot can rotate the
antenna and sample the signal strength at each orientation.
With enough samples, we estimate the orientation with the
maximum recieved signal strength, which is roughly the
bearing to the radio tag. See Figure 2. Since the fish tend
to aggregate in large, stationary groups for long periods, an
individual target is considered static during localization. In
practice, the slow motions of the target are confined to a
small area, and are considered part of the measurement noise.
This brings us to our second problem:

Problem 2 (Active Localization). As quickly as possible,
construct an initial estimate of the fish’s location and use
bearing measurements to locate its position to within a given
uncertainty bound.

As a first step, we establish an initial estimate. In [?],
we showed how a Gaussian prior for each target can be
constructed by searching for the boundary of the region of
detection: a roughly circular area around each tag from which
the transmissions can be reliably detected. The centers of
these circles are used as the initial target locationx̂, and each
circle becomes the three-sigma boundary of the covariance.

The robot can now begin the process of choosing a
sequence of sensor locationsS = {s1, · · · , sn} from which
it will collect bearing measurements and localize the targets.
A target is considered localized if the posterior covariance
is sufficiently small. Thus, the objective of the localization
step is to take measurements such that the eigenvalues of the
covariance are reduced to below a threshold.

As an example, to locate a target to within typical hand-
held GPS precision (approximately 5 meter expected error),
we would constrain the covariance to have the square root
of both eigenvalues smaller than 5.

Note that the optimal number of measurements for each
robot as well as the positions of these measurements is un-
known. Additionally, the optimal sequence of measurements
must consider the cost per measurement. If the cost is high
relative to the cost to relocate, then we expect the optimal
algorithm to travel to very informative measurement loca-
tions. But, if the cost to relocate the robots is high, we expect
the robots to move very little and take many measurements.
Communication is a further complication because any two
robots must be nearby to share their measurement values,
form a consistent estimate of the target location, and plan
the next measurement step(s).

We can concisely state this multi-robot active localization
problem as follows.

Problem 3 (Active Bearing-Based Localization). N robots
travel with velocityv, take timetm to take noisy bearing
measurements of the targetx⋆, and have Gaussian sensor
noise with varianceσ2

s . Furthermore, two robots must meet

to exchange measurements by moving to within a distance
r to communicate the results of their measurements. What
is the optimal sequence of measurement and communication
locations for each robotu, Su = {su,1, · · · , su,nu

} such that
all robots have a consistent final target estimate and the final
target estimate has bounded expected error?

We consider two ways of solving the problem: Offline and
Online.
Approach 1: Offline Analysis

The offline formulation assumes that the true target lo-
cation is known. This assumption is not valid in practice.
However, we use the solution to analyze the performance of
online strategies. In the offline setting, the goal is to bound
the expected error of the target estimate, given the known
sensor noise, sensor locations, and target location. The metric
commonly used in this setting is the Fisher Information
Matrix (FIM). The inverse of the FIM is called the Cramer
Rao Lower Bound, and gives the expected error of the target
estimate around the true target location (the covariance).

In [?], we prove the geometric structure for the optimal
offline solution for two cooperating robots. The optimal
solution can then found using a simple gradient descent
search. Subsequently, the two-robot solution is extended to
include communication constraints so that both robots can
rendezvous and form a joint estimate of the target location.
Finally, the same solution is extended to include an arbi-
trary number of robots without increasing the computational
complexity. These results are summarized in the following
theorem.

Theorem 1 (Optimal Offline Active Localization). There ex-
ists an algorithmA which produces a sequence of measure-
ment locations forN robots with respect to a known target
location such that when all measurements are combined, the
following are satisfied. Let the final covariance around the
true target location beΣ.

• The maximum eigenvalue ofΣ is less than the desired
amount.

• WhenN = 2i for a non-negative integeri, the cost of
A is optimal.

• WhenN = 2i + 1 for a positive integeri, the cost of
A is less than2 times optimal.

• When the robots have distance-based constraints on
their communication, the cost ofA is less than twice
the optimal cost.

• The computational complexity of computing theN
robots’ measurement and communication locations is
independent ofN .

The algorithm is presented in [?]. Critically, the cost
bounds in the previous results incorporates the velocity
of the robots, communication constraints between them,
measurement time, and measurement uncertainty to produce
a baseline comparison for the cost of any bearing-only active
localization algorithm.
Approach 2: Online Analysis

In the online setting, the measurements collected at each
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Fig. 5. Optimal two-robot trajectories for various system parameters. In all figures the robots started at location(3, 0) and the true target was at(0, 0).
Communication constraints were only considered in the top right figure and all other parameters were held fixed. Top-left: λd ∈ {.1, 1, 3, 8}. Top-right:
rc ∈ {2.1, 1.1, .1}. When rc = .1, the robots rendezvous after measuring. Whenrc = 2.1 the output is the same as the result from unboundedrc.
Bottom-right: tm ∈ {.01, .1, 1} Note that astm increases, the optimal algorithm travels to more informative locations so that fewer measurements are
required. Bottom-left:σ ∈ {.1, 1, 4, 8}. Note that changing the sensor noise produces the same effect as requiring more information (compare left two
figures). From [?].

location are used to update the target estimate. Then, sub-
sequent measurement locations are planned with respect to
the new estimate. In [?], a single robot algorithm is provided
which can localize a single target using only a prior estimate
of its location. The cost of the algorithm was bounded, and
compared to the optimal offline algorithm. An example of
the trajectories and measurement locations for two robots is
shown in Figure 5.

To extend to multiple robots, the optimal offline algorithm
was shown to be adaptable to an online setting using results
also presented in [?]. We show that any online algorithm
satisfying mild requirements about measurement positioning
with respect to the target estimate can be used to build a
near-optimal online algorithm. In fact, the resulting online
algorithm is shown to be within a logarithmic factor of the
optimal cost. Thus, the previous result can be extended to
an online strategy which is proven to locate the target up to
a desired uncertainty level at near-optimal cost:

Theorem 2 (Online Adaptation). Let A be an offline algo-
rithm which produces a sequence of measurement locations
for N robots with respect to a known target location. Then
O(log(λ)) calls toA are required to localize a target in an
unknown location, when the final covariance,Σ must have
both eigenvalues less than1

λ
. Let the cost ofA be O(C⋆),

whereC⋆ is the cost of the optimal algorithm. Then the cost
to localize a target in this way is a logarithmic factor worse
than optimal. Or,O(C⋆ log(λ)).

The online algorithm was tested in field trials on Lakes
Staring and Gervais and on the University of Minnesota
campus. One such trial is shown in Figure 6.

V. ENERGY

When mobile sensors must operate outdoors, their system
lifetimes are often severely constrained by the maximum
energy of their batteries. Therefore, energy awareness and
optimization is critical for these settings. In this section we
present methods for planninghow a mobile robot should
make its way to a sensing position while minimizing its
energy cost. This is a task with two parts: First we will
examine how a mobile robot should navigate to a position in
a way that minimizes the energy expended by its motors.
Then we will examine how the robot should navigate to
maximize its battery life in situations when the robot is

equipped with solar photovoltaic panels which can harvest
energy from the environment.

A. Power to Drive

First, to understand the structure of optimal trajectories,
consider the problem when the robot is car-like (with min-
imum turning radius but no turning cost), the path is fixed,
such as a road or a track, and we only need to find the optimal
velocity profile. There is a constraint, however, that different
portions might have different maximum speeds, usually from
traction constraints while turning at a particular radius on a
particular surface. We can formally phrase this problem as
follows:

Problem 4 (Velocity Optimization). Let the path that a car-
like robot must traverse beτ . τ consists ofN segments which
are straight lines or curves. There is a separate velocity
bound for each segment. Find the optimal velocity profile to
minimize the power consumed by the robot while traversing
τ .

In [?] this problem is solved in closed form given a
detailed electric motor model and a single segment. When
there are multiple segments, the optimal profile can by found
through dynamic programming by discretizing the velocity at
the transition points between segments. An example optimal
velocity profile is shown in Figure 7(a). The strategy is
experimentally calibrated to the motor of a real robot car,
and optimal velocity profiles are planned and executed.

Now consider the more general case, where the robot only
needs to reach a particular destination and it is free to chart
its own path:

Problem 5 (Trajectory Optimization). Given start and goal
poses, compute a pathτ and a velocity profile along this path
for a car-like robot traverse from the start to the goal while
minimizing its power consumption. The velocity at all times
must obey a traction constraint which restricts the maximum
speed as function of the turning radius.

In [?] this problem is solved for the same motor model
through dynamic programming over discrete positions and
velocities. The solution is optimal, subject to the resolution
of discretization by fixed-curvature paths. The solution is
often quite different from selecting first the shortest feasible
path and then optimizing the velocity; frequently a longer
path can result in lower overall energy cost, by allowing the



Fig. 6. Experiment results from Lake Staring, MN, USA using two robots and the algorithm described in [?]. (a): The experiment area. The true target
(and camera in [?]) were placed on the docks near the bottom right corner (labelled with a star). The robots began near the top-middle (circle). (b): The
two measurement steps produced the dark paths shown, with measurements taken at the white squares. The final actual uncertainty was the inner blue
ellipse. (c): More execution details. The solid red circles are the points where the robots exchanged information and the measurement locations are again
given as white squares. The figure covers an area approximately 200m vertically by 150m horizontally. From [?].
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speed, and reach its destination with less energy consumption. From [?].

robot to traverse it at a more efficient speed. An example is
shown in Figure 7(b).

B. Solar Power Estimation

Now, consider energy that can be collected from the sun. If
the field of solar power is stationary across the state space of
the robot, minimizing the motor current is sufficient to also
maximize the battery of the robot after the move. However, if
the field is complex, different paths to the destination might
collect different amounts of solar power. In some cases it is
even worthwhile for the robot to deviate far from the shortest
path and wait in the sun if there is sufficient time.

For the robot to plan the energy-optimal path, it requires an
accurate map of the solar field. Often this field is estimated
for clear conditions by first estimating the 3D geometry of
the environment in high detail then performing raytracing
from the computed position of the sun at any time. How-
ever, when the geometry is not known a priori, it can be

(a) Alumni Center (b) Cloudy Sky Solar Estimates

(c) Clear Sky Solar Trials

Fig. 8. The McNamara Alumni Center testing environment, andGaussian
Process Regression estimates of the solar intensity acrossthe environment
on a cloudy and clear day. The cloudy estimate includes the training path
that the robot drove along to form its estimate. The clear estimate includes
planned and executed trials where the robot attempted to minimize its energy
cost to reach the destination in the specified amount of time,given the solar
map. From [?].

challenging to reconstruct without the use of sophisticated
sensors. An interesting problem, therefore, is the following:
Can a robot with minimal sensors estimate the solar power
it will receive if it travels along a candidate path? A natural
minimally-sensing robot is one which can measure only its
own position, and how much solar power it receives as it
moves. In this setup we estimate future measurements of
solar power at positions from past measurements of solar
power at positions. The problem can be formally stated as
follows:

Problem 6 (Solar Estimation). Let the prior points visited
by the robot beX = {x1,x2, · · · ,xn}, where eachxi is
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(d) Estimate for 09:30

Fig. 9. The Lake Como testing environment, the estimated lower bound heightmap constructed from observations of solar power at positions, an example
solar map estimated for 09:30 CDT from the constructed heightmaps, and by using GP regression. From [?].
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(b) Lake Como

Fig. 10. The measured solar current for our trials plotted against time
of day, with best fit curves estimating the current that can becollected in
the sun and in the shade. There are three curves showing the estimate for
leaving out each of the data sets. At the Alumni Center the three curves
agree almost perfectly, but this is not the case at Lake Como.The average
cross validation error at the Alumni Center was 0.0660 amperes, and at
Lake Como it was 0.1301 amperes. For planning purposes, the estimated
magnitude is close to the true magnitude. From [?].

a vector containing the position and time of the visit. The
robot records the solar poweryi at each point to form the
set of measurementsY. Estimate solar powerY∗ that will
be received at pointsX ∗.

Approach 1: Gaussian Process Regression
A first approach to estimate the solar field is by approxi-

mating it as a continuous spatial Gaussian Process, as in [?].
This approach has the advantage that it is straightforward to
implement, and it works equally well for cloudy and clear
days. However, it is most useful over short time scales,

because it ignores the change in solar intensity and sun
position during the day.
Approach 2: Gaussian Process Classification

On a sunny day, almost all positions can be classified as
sunny or shaded. Then both the shadows and the solar
intensity can be adjusted during the day for the position
of the sun, treating the shadow map as a spatiotemporal
Gaussian Process. This approach is detailed in [?]. It has
the advantage that it can provide good estimates of shadow
maps with very little information about the full shapes of the
shadows that have been partially observed.
Approach 3: Environment Reconstruction

If there is sufficient information about the shadows that
have been cast, it is possible to reconstruct the environmental
geometry of the objects that cast the shadows. In [?] this is
done by modeling the shadow casting objects as a terrain,
with an upper bound and a lower bound on the height of the
terrain at each discrete square. The accuracy of the estimated
environment can be improved with a prior estimate of the
position of the objects, such as a satellite image of the
boundary of a lake.

All three approaches to solar estimation were attempted
at the McNamara Alumni Center, a field at the University
of Minnesota in Minneapolis that contains scattered trees.In
addition, Gaussian Process Classification and Environment
Reconstruction were attempted at Lake Como, a lake in St
Paul, Minnesota. At the lake it was possible to eliminate
candidate positions of shadow casting objects when using the
reconstruction method. All three methods produced accurate
solar maps when there was sufficient coverage. Environment
reconstruction accurately placed shadow-casting objects, as
shown in Figure 9. Quantitatively, GP regression was suc-
cessfully used to plan solar-aware paths, as shown in Fig-
ure 7. Estimates of shadow maps from GP classification and
reconstruction have good cross-validated performance, asdo
the estimates of solar power in the sun and shade across the
day (shown in Figure 10).

C. Planning Solar-Aware Paths

Finally, there remains the problem of how to find the
lowest energy cost path given a power-to-drive model and
a solar map. The problem setup often requires a time limit



Solar Duration Expected Actual Expected Actual Control Duration Actual
Trial Solar Solar Net Cost Net Cost Trial Net Cost

A 401 s 7, 025.5 J 6, 974.1 J 577.16 J 744.6 J F 45 s 6, 295.4 J
B 400 s 6, 606.6 J 6, 828.6 J −3, 265.9 J −3, 256.7 J

G 19.1 s 2, 888.1 JC 104 s 1, 148.3 J 611.26 J 879.99 J 2, 253, 4 J
D 104 s 1, 600.9 J 1, 297.6 J 2, 907.3 J 3, 480.3 J H 30.4 s 3, 530.4 J
E 104 s 1, 600.9 J 1, 156.2 J 2, 907.3 J 2, 822.5 J

TABLE I

PATH EXECUTION RESULTS. ON THE LEFT SIDE OF THE TABLE ARE THE FIVE PLANNED AND EXECUTED SOLAR-AWARE PATHS, SORTED BY START

POSITION AND END POSITION. ON THE RIGHT SIDE OF THE TABLE ARE THE THREE SHORTEST PATHS EXECUTED WITH NO SOLAR PANEL, FROM THE

SAME START AND END POSITIONS AS THE TRIALS DIRECTLY TO THEIR LEFT. OBSERVE THAT, AS EXPECTED, THE SOLAR POWERED ROBOT PERFORMS

BEST WHEN IT IS ALLOWED TIME TO DEVIATE FROM THE SHORTEST PATHAND CHARGE ITS BATTERY IN THE SUN. FROM [?].

to reach the destination, otherwise a solar-powered robot
might have unbounded energy gains. This problem was
addressed in [?], using a simplified power-to-drive model
for a differential drive rover. The path is found through
spatiotemporal dynamic programming. The power gained
by the rover was compared with the power gained by a
rover without a panel that traveled straight to the destination.
The results of the experimental trials are shown in Table I.
These results demonstrate that it is possible for a solar-
powered robot with minimal sensors to learn enough about
its environment to plan efficient paths.

VI. CONCLUSION

We presented our efforts toward building an autonomous
multi-robot system for tracking mobile targets – in this case,
radio-tagged invasive fish. We presented an overview of our
results on three motion planning problems where the goals
are (1) to find the target, (2) to precisely localize the target,
and (3) to maximize energy efficiency both by minimizing
energy consumption and by maximizing harvested solar
energy. We reported our main theoretical results and results
from field experiments. For further details, the reader is
referred to corresponding papers.

In order to make the system fully autonomous, other
challenges must be overcome. One interesting question is
regarding communication: if the robots lose each other, how
can they re-establish communication? This can be formulated
as a cooperative search problem. Another issue which proved
critical is fault detection. For extended missions, the robots
must be able to detect e.g. when a sensor fails and find ways
to mitigate this failure perhaps by reporting to a mission
center. Finally scaling the system to many robots is an
exciting research frontier.
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