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Abstract We explore the problem of energy-efficient, time-consedipath plan-

ning of a solar powered robot embedded in a terrestrial enmient. Because of
the effects of changing weather conditions, as well as sgrincerns in complex
environments, a new method for solar power prediction isrdlele. We present a
method that uses Gaussian Process regression to buildrarsgan a data-driven
fashion. Using this map, we perform energy-optimal patiipilag using a dynamic
programming algorithm calibrated using power to drive eipents. We validate
our map construction and path planning algorithms with oatdexperiments, and
perform simulations on our solar maps to determine undechvhonditions the

weight of added solar panels is worthwhile for a mobile robot

1 Introduction

Mobile robots have the potential to perform many criticatdmor tasks but their
potential for long-term deployment is limited due to eneocgycerns. A possible
method to increase the battery life of robots is by harvgstinergy from the en-
vironment, e.g. with photovoltaic solar panels. Solar kating has proven to be
useful in marine and extra-terrestrial robotics applmasi[11, 1] which take place
in open space. However, in applications where the robot mpstate in complex
environments, such as urban search and environmentalaniogitthe utility of so-
lar harvesting is not obvious. In this work we focus on extegdhe battery life of
mobile robots using solar panels in such settings.

We study techniques for energy-minimizing path planningaamobile robot
with a photovoltaic panel that uses recent measurementslaf mtensity as its
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only source of information about future solar power. Thiansinteresting problem

because there are many applications where mobile robotsteh@nessarily have the
sensors or computing power to estimate solar maps usingssigaed techniques
such as raytracing on 3d models of the environment. Howewnergy-efficient paths

are still desired. Intuitively, it seems feasible for a gsotar map of the environment
to be built if the robot is in the field long enough. We provideerimental evidence

to support this intuition.

To accomplish energy-efficient path planning, we first bailshap of how much
solar power the robot is likely to get in its operating enmiment (Section 2). Next
we show how the robot’s energy consumption can be modelechemdwe can
compute energy efficient paths given a solar map (SectiokVV@)present results
from experiments that demonstrate the utility of our tegnes (Section 4). We also
present simulation results on our solar maps to demonstratdility of added solar
panels on a robotic platform (Section 5).

1.1 Related Work

Energy efficient planning for mobile robots has receivedéased attention re-
cently. Mei [8] studied the problem of modeling the powersamption of motion,
sensing, communication and embedded hardware for comaigmyailable robots.
These power models are then used to compare various segfeghigh-level tasks
such as coverage, exploration and networking betweensphod increase the life-
time of the system.

Motion is a major source of power consumption for typicalotsh Tokekar et
al. [15], Wang et al. [17], and Kim and Kim [6] have studied fiv@blem of mini-
mizing the energy consumption by optimizing the velocitgffles for a given path.
Sun and Reif [13] studied the problem of finding energy oplipaghs between two
points on terrains where the cost depends on friction andtgrand is thus direc-
tion dependent. They present an approximation algorithrfiriding the minimum
energy path, but do not optimize the velocity profile alorgplath. Liu and Sun [7]
recently studied the problem of computing energy-effigeaths and trajectory pro-
files by optimizing the parameters of Bezier curves usingremngy-based heuristic.
However, the presented method is not guaranteed to miniemeegy and the gen-
eral problem of simultaneously optimizing the path and e#jofor given start and
goal pose remains unsolved.

Energy efficient motion planning in the context of applioas such as coverage
and data muling is a subject of recent study. Derenick eRhbktlidied the problem
of maintaining persistent coverage using a network of relgt deriving control
laws that allow robots with depleted batteries to reachesponding access points.
Similarly, Jensen et al. [5] presented strategies for riégoring robot formations
for patrolling application.

Sugihara and Gupta [12] presented path planning algorifoma data muling
system for optimizing the trade-off between the energy aomsion of the sensors



Energy-Efficient Path Planning for Solar-Powered Mobilé&s 3

and latency of the data carried by the robot. Tekdas et a].gtidlied the problem
of finding time-efficient trajectories for a mobile robot dowading data from a
set of wireless nodes, and by setting the parameters piopakto energy cost
their approximation algorithm can minimize energy instedtime. In these work,
the energy consumption of the robot, however, is not consdldn this paper, we
present energy harvest and path planning techniques thaiatantially be useful
for such applications.

The aforementioned works have not considered energy hargdsom the envi-
ronment, and solar-aware path planning has received linaiteention. In extrater-
restrial applications and some environments on earth i@ gntarctica [10]) col-
lected solar energy can be treated as mostly independehéeqfath chosen. The
TEMPEST mission-level path planner [16] uses ephemerisvaoé to determine
the position of the sun and then performs raytracing on knoearby terrain to
build a solar map that is used to estimate the energy costtb§ pahis is feasible
when nearby terrain is known or when it can be accuratelyctitie but many other-
wise feasible platforms for long-term environmental moriitg lack the necessary
sensors to do this. In this paper we focus on predicting gaeter in complex en-
vironments using only the robot’s previously recorded pasiestimates and solar
power measurements.

1.2 Problem Statement

Our problem statement is as follows: Suppose we have a nsmdde-powered robot
that has been performing a task while also logging the poe@sived from an on-
board solar array. Each solar measurement is associatedawiestimated robot
position. Suppose the robot is required to perform a new tlagk requires it to
reach a goal position within some time limit. How can the rioplan the path that
minimizes its net energy consumption?

2 Solar Modeling

In this section we introduce the method we use to predict howimsolar power the
robot will receive at a given position. Before we present phecise mathematics
of our Gaussian Process (GP) regression, we first cover tsiesbaf predicting
electrical output from a photovoltaic panel.
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2.1 Basics of Solar Power Prediction

The amount of currerta solar cell will output when itis fixed to a particular voleag
V is the solution to the equation

V +1Rs
RsH

| = IL _ |S(e(V+|RS)/VT _ 1)

wherels is the reverse saturation current of the diode ¥ne- T which is known

as the thermal voltagé. is proportional to the number of photons that impact the
solar cell, and therefore solisl decreases with higher voltage, but the effect isn’t
pronounced until the diode knee voltage is reached at aréumdolts for a sili-
con cell. The knee voltage increases with decreased tetaperaut in general the
voltage limit varies much less than the current.

Because the voltage of an individual cell is low, cells areally connected in
one or more strings such that each string is electricallgites. These strings have
the property that the amount of current output is limited lhyweakestell in the
string (ignoring the effect of bypass diodes). The weakeltould be the cell with
the smallest dot product between its normal vector and theasgle vector, or it
could be a cell which happens to be in a shadow. This responsetial shading of
the array causes the correct solar map to have sharp edgeshadaws, especially
on sunny days.

Sunlight reaches a solar panel in three different ways:dbines directly from
exactly the part of the sky that contains the sun, it is cadledct insolation. If it
comes from any other part of the sky, it is called diffuse lagon. Finally, if it
comes from anywhere else (i.e. from terrain or objects$, dailed reflected insola-
tion [4]. Reflected insolation is most relevant when a sotargh is tilted towards a
reflective surface (such as snow), or near a reflective mgilddn a sunny day direct
insolation is high and diffuse insolation is low whereas ahoaudy day direct inso-
lation is low and diffuse insolation is high (and total irestdn is much lower than
on a sunny day). If a cell has no line of sight to the sun it is §hadow, and direct
insolation drops to zero. However, for diffuse insolationdrop to zero the entire
sky must be blocked. Therefore we can expect shadows anefdheithe correct
solar map to be much sharper on a sunny day than on a cloudy day.

Itis challenging to detect the environment and performresyng for these three
types of insolation so we sidestep and instead constructalar map using regres-
sion from prior measurements of solar power associatedpuaigitions.

2.2 Gaussian Process Regression

A Gaussian Process (GP) is defined as a set of random vargigleshat any subset
of the random variables has a joint Gaussian distributign@® regression is a
general regression technique used to predict the mosy likalie of a function
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at any point given measured values of the function at somer gibints, without

assuming an explicit parametric model for the function. @gression, however,
requires a suitable covariance function to model the joimtigsian distribution for
points. For more details on GP regression in general see [9].

In our application we associate each measurement of solampmith a position
and use GP regression to predict the distribution of solargp@t any desired po-
sition. When all of the solar cells are horizontal, or if theme otherwise suitably
symmetric, the rotation of the robot can be ignored in thesdtipn measurements.
This makes the solar map easier to learn by eliminating a msimea along which
solar power can vary. In this paper we neglect the solar miaps dependence
from the changing position of the sun. This is justified whea tobot stays in the
same environment each day, and can therefore build a sejgatat map for various
discrete time segments.

In Section 4.4 we present more details of our particular @nmntation of GP
regression, and we empirically compare the performancéffareint covariance
functions.

3 Path Planning

In this section we show how we use a solar map to plan the patwil reach the
target within the time limit while consuming the least amboienergy overall.

Our robot is differential-driven, so it can turn in placedaanrning is a relatively
expensive operation. We empirically determine in Sectid@ that for our robot
the energy consumption of a path with a certain top speed lisregesented as
a short initial spike during acceleration, and then a steady per meter traveled.
Therefore we model the planned path as time-stamped watgpaith straight line
segments connecting them, each line segment traversedaatstéant speed with
instantaneous speed changes between line segments. Wethedaergy sent to
the motors as the following: At any particular speed, thera constant cost per
meter traveleds, a constant cost per radian rotatgd and an initial acceleration
costCy. When transitioning from a non-zero speed, the acceleratist is theC,
for the new speed minus i for the old speed, but with a minimum cost of 0. This
makes sense if we assume that acceleration cost is prapaltiokinetic energy. We
can mathematically state the cost of traversing line segimnen

cost = Cs(speed)|li| + C (speed) |6 — 61| + maxCa(speed) — Ca(speed.1),0)

The cost constants as functions of speed are specific to bioé¢ aod the terrain.
The terrain where our experiments were conducted was flatiaifiokm, so in this
work we do not consider changes in elevation, friction, dirrg resistance.

The total cost of a path is given by the sum over the @{tjﬁcost minus the
expected amount of solar energy collected while travergiagpath. An idle power
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draw (constant) can be subtracted from the solar power; weod@onsider idle
power draw because our focus is on path planning and idle pdees not affect
the optimal path to reach the target in the time scales weidens

Algorithm:

The expected value for any particular point in our solar map lee determined
in closed form, however there is no convenient closed forrdehfor the entire map
as a whole; that is, there is no general geometric model weisaro represent our
environment. Therefore some amount of discretization@stilar map is necessary
for us to do planning. It is possible in this domain to plan @aetof sampled actions
or path shapes (e.g. with an sampling based planner) but #irecstate space is
relatively small we use a complete grid. We then perform dyisgprogramming
to compute the optimal solution for a given resolution. Wecditize both space
and time, and we also have a dimension in the dynamic progmagntable for
heading and a dimension for whether the robot is moving ordbet is waiting,
to account for the cost to rotate and the cost for initial se¢ion. These four
dimensions ensure that the output path is always optiméd iesolution, according
to our power to drive model. The trajectories generated atgorithm move at a
constant speed when they are on Manhattan edges and arastegrdonstant speed
when they are on diagonal edges.

We observe that optimal trajectories consist of eitheriooimius movement, con-
tinuous movement with a wait at the beginning or the end, atinaous movement
broken up by a wait in the middle. As more time is allowed thémal path transi-
tions between those three types: at first there is no time toamgwhere, then there
is time to wait but not enough to compensate for the energy flasn having to
re-accelerate, and then finally there is enough time to waitesvhere in the middle
for long enough to recoup the extra acceleration cost ansifggsenough time to
allow deviation from a shortest path. See Figure 3a for exasngf planned paths
output by our algorithm.

4 Field Experiments

We performed three sets of experiments with one robot in tivg@ment shown
in Figure 1b: we calibrated our power to drive parametersneasured solar panel
current along paths and used this to construct solar mapg dgferent covariance
functions, and we executed paths that we planned on thesge map
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4.1 System Description

The chassis of our system was a Husky A100, built by Clearpatbotics. The
A100 is a six wheel, two motor, differential drive machindeldatasheet mass is
35 kg, the maximum payload is 40 kg, and the dimensions agO0&eters long by
0.605 meters wide by 0.350 meters tall. In its experimergafiguration the A100
was powered by a single lead-acid battery that was nomitdiand 21 amp hours.
See Figure 1a for a photo of the A100 during one of our expetisme

The solar panels used by our system were two SPM020Ps fraant&ch Powe.
The SPMO020P supplies 20w at the optimal voltage of 17.2v ustindard test
conditions of 1000 w/rinsolation and a temperature of5 The panel is wired
as a single series string with 36 cells in it. The dimensiaes5®0x360x18(mm),
and each panel nominally weighs 2.5kg.

We placed the panels horizontally on the robot for ease ofriiog, for quality
in overcast conditions, and to eliminate the dimension oigbeotation in the solar
map built. Both panels were connected in parallel with thigelog; therefore solar
panel current was proportional to solar power. Batteryagsetand motor current
measurements were provided by the A100, and current fromahel to the battery
was measured with a hall-effect current sensor.

Localization was achieved by using an EKF to fuse GPS meammts with
wheel-encoder propagation.

4.2 Terrain Description

We performed our experiments in the field next to the McNandduanni Center,
on the Minneapolis campus of the University of Minnesota (Begure 1b). The
field is roughly 40 meters by 30 meters and it is relatively, fiéth uniform short
grass. Other than a few poles the only objects that occluglestin are scattered
trees. While our calculated power to drive parameters alzat stap parameters are
likely to change in other environments, the methodology vesent here to obtain
those parameters remains the same.

We performed our experiments on dry days when there was neo snothe
ground. We would expect power to drive to significantly chamg wet weather
or if there is accumulated snow. All solar parameters exttepthosen covariance
function were re-learned for each new solar map; this wasssary to account for
short term changes from the varying position of the sun, oraderm changes from
varying weather, and long term changes. One of these longdkanges was a sea-
sonal change in solar power that occurred as the leavedfétieotrees as summer
turned to winter.

1 http://www.clearpathrobotics.com/
2 http://www.solartechpower.com/
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(a) Clearpath Husky A100 (b) Test Site

Estimated Panel Current (amperes) Estimated Panel Current (amperes)

y (meters)
y (meters)

‘ 190 200 210 220 190 200 210 ze0 230
X (meters) ¥ (meters)

(c) Sunny Solar Map (d) Cloudy Solar Map

Fig. 1: Our configuration of the A100 (a), top-down view of tiest site (b), solar
map constructed for 13:42 on November 18, 2011 (c) (this wasnay day), and
solar map constructed for 11:22 on September 16, 2011 (&)wts a cloudy day).

Both solar maps are overlayed with their source paths. Thelgimap was built by
sampling with only a single solar panel.

4.3 Power to Drive Experiments

We controlled the forward movement of the A100 by directlyting the motor
voltage. We found that this method was more efficient thangisi closed loop
PID speed controller. For a particular motor voltage and artiqular terrain, the
A100 travels at a particular steady-state speed and corssarsteady amount of
energy per unit distance traveled, after a brief accelamgieriod. To characterize
the steady-state cost and acceleration cost we drove lstratia variety of com-
manded motor voltages and fit a line to the plot of cumulato® s. distance for
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each voltage. The slope of the line determined the steadly stst and the inter-
cept determined the acceleration cost. Then we performedidiregression on the
steady state costs as functions of speed and quadraticsagren the acceleration
costs as functions of top speed, and ended up with the fallpwquations for our
parameter€s andC, (see Figure 2):

Cs = (—17.6624x speedt 139.4576) Joules per meter

Ca = (3210671x speed — 2853912+« speed- 1549553 Joules to accelerate

Then to characterize turning cost we commanded a tight deft &nd tight right
turn, and examined the steady state energy per radian.

C; = 4065963 Joules per radian

O measured steady cost per metel
O measured initial cost
" [e] jole)
fit steady cost per meter (e}
fit initial cost
]
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Fig. 2: Power To Drive Test Results

4.4 Solar Map Construction

The input information for the solar map is a long path withsyomeasurements
of solar current taken at 20 Hz, each measurement assoeigtec position on
the path. This accumulates to a very large number of measumtsrif the robot is
embedded in the environment for a long time. As GP regressli@s on matrix
multiplication of all training points, using all measurem& as individual training
points becomes infeasible. Fortunately, since we only ahmut associating solar
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current tox —y position we can throw away information about rotation amaeti

and combine measurements with similar y position. In this way the number
of measurements considered by the GP regression is bourydie Isize of the

environment rather than the length of time the robot is ctillg data. Also it is

valuable for optimizing the hyperparameters of the GP foasoneed positions to be
weighted equally instead of weighted in proportion to thevant of time the robot
has spent there.

In our implementation we placed in a bucket all measurentaatsvere within
0.3 meters of the first measurement, and then removed themtfre list and re-
peated until every measurement was in a bucket. The bugatision was set as
the centroid of the positions of the measurements in it, endalue was set as the
mean of the values of the measurements in it. We calculateddtiance of each
bucket from the variance of the measurements in the bucketjrig the bucket so-
lar current as an average of uncorrelated measurements fahie regression we
treated the noise variance as equal to the average of theneas of the buckets.
This was again to induce more equal weighting of differeetar if the robot had
waited 20 minutes at the same position we did not want thediumntaining that
position to be significantly more valuable than nearby btskecause still only a
small portion of the possible points that could go into thatket would have been
explored. The prior mean and prior variance were computea fithe mean and
variance of the set of buckets.

To perform GP regression we need a covariance function liowe considered
different versions of the Matérn covariance function &let in [9]). The Matérn
class of covariance functions is given by:

W (7)< ()

k(r) = — | K| —

r(v) 14 14

wherev is a positive parameter that affects the smoothness of thaeps/ is the
positive length parameter, akg is a modified Bessel function. ¥fis 1/2 the func-
tion becomes the exponential covariance function, and-ase the function be-
comes the squared exponential covariance function. Otla@rthe exponential and
the squared exponential, the most commonly used Matémriamce functions are
wherev=3/2 andv=>5/2, so those are the covariance functions we tested in addi-
tion to the exponential. The Matérn with= 5/2 never had higher likelihood than
the Matérn withv = 3/2 so we did not increasehigher than 32.

To optimize the Matérn function’s length hyperparameterperformed numer-
ical gradient-descent searches maximizing the likelihobthe observed values
given the covariance function. Then we used the maximunfitiked the gradient-
descent could find to pick which Matérn function was the biestirned out that
the most jagged function, the exponential function, washlost likely function on
all sunny days tested and on all cloudy days tested except fbt:22 on Septem-
ber 16, where the function with= 3/2 was the most likely. Holding = 1/2, the

most likely length varied between 2.05 meters and 12.65mmetesunny days, and
between 3.68 meters and 18.67 meters on cloudy days. Tlésedite is because
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diffuse insolation dominates over direct insolation oruclp days, and diffuse inso-
lation varies slower than direct with changing position.

4.5 Path Planning and Execution

At 12:50 on February 18, 2012 we drove the A100 around the firekigure 1b,
optimized the length hyperparameter for that dataset wittx@onential covariance
function, used GP regression to build a solar map, plann#tspeith our planner
detailed in Section 3, and then executed the paths. The AA08@dme localization
error even when GPS worked well, so a fairly low spatial reoh of 5m was used.
Temporal resolution was set to 8 seconds. To calculate thectsd solar current in
a grid square the expected solar current was calculated aghartresolution 1m
grid and then downsampled. In addition to the planned sohare paths the A100
also executed shortest paths after we removed the solalsahghtly decreasing
the power to drive due to decreased weight) from the samigpsisition to the same
end position. These paths provide a comparison, allowirig dsectly demonstrate
the utility of the added panels. See Table 1 for summarielseoékecuted paths.

Solar Trial [Duration |Expected Solarff Actual Solar|Expected Cos{Actual Cost|Control Trial [Duration| Cost

A 401s | 702550 | 607413 | 57716 | 74463 F 255 [6,29547
B 2005 | 6,60660 | 6,8286J | 3,650 | 32567

c 1045 | 1,1483J) | 61126 | 87999 | 225343 G 19.1s |2.8881J
0 104s | 160090 | L2976 | 290737 | 3,48037 o 3045 |5.5304

104 s 1,6009J 1,1562J 2,907.3J 2,8225J

Table 1: Path Execution Results

5 Power Comparison

To further investigate the benefits gained from solar pamadsran simulated com-
parisons between our solar powered robot using our pathptetiner and our robot
stripped of its panels driving straight towards the desiima We picked a start po-
sition and end position, planned the optimal solar-awath fix a range of time
limits, and compared the cost to drive straight without agbavith the distribution
of likely solar robot costs. For these simulations we did cantsider localization
errors, so we increased the resolution of our planning griimeters per square, 3
seconds per square. We intentionally chose start and eritibpssn the shade, to
see how the system would perform under somewhat adversé&iooisd

First we considered a robot traveling from the southwedt gfathe trees to the
northeast part of the trees, at 12:50 on February 18 (the daynas our path exe-
cution trials). For details of this simulation see Figurasséd 4b. The start position
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Fig. 3: Planned solar-aware paths and example trials. Natert trial D the planner
chose to wait at the beginning given the information it hatlibturned out the
position at the end of the path received more solar power.
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was(188 —109) and the end position wd208 —89). At a speed of 1 m/s we expect
the baseline path to consume 3,065.0 Joules. For the sdiat tw be on average
more energy efficient than the baseline it requires at leastetonds to execute
its path. This is an overall speed gf0.6734 m/s. For the solar robot to be more
energy efficient with 95% confidence, it requires at least &brds which is an
overall speed of 0.4962 meters per second.

Second we considered a robot traveling south through theeshiethe west line
of trees, at 13:42 on November 28. For details of this sinetee Figures 4c and
4d. The start position wagl 95 —80) and the end position wgd95 —100). At a
speed of 1 m/s we expect the baseline path to consume 2,2 FnBthe solar robot
to be on average more efficient than the baseline it requiteast 63 seconds which
is an overall speed of 0.3175 m/s. For the solar robot to bemfficient with 95%
confidence it requires at least 78 seconds which is an owgredld of 0.2667 meters
per second.

6 Experimental Insights and Concluding Remarks

In our experiments, we observed that true solar energyatelieduring a trial was
close to the expected solar energy obtained from GP regredsowever, the pre-
dicted probability distributions did not necessarily mafde the true distributions.
This is because the probability distribution of sunlightgioint is poorly modeled
by a Gaussian distribution: on a sunny day the correct pitityadistribution of
expected solar power at any given point is bimodal, with ssegeaks of expected
power for the case where the panel is in the sun and the case wigin the shade

On Febrary 18 the system did not lose much accuracy by néuietct consider
the sun’s movement, though the solar map was constructet?t60 and the last
solar trial (trial E) began at 14:19. The impact of movingdihas may have been
mitigated by the fact that shadows were sparse due to bametiga on the trees.

Our power to drive model was reasonably accurate. It tendeshtlerestimate
power to drive but not by much: on average it missed by 396vshich was on
average 11.2% off from the true value. It underestimated fiowes and overesti-
mated once. This indicates that our learned parameters eeerect and that the
A100 waypoint navigation software was not performing toagneorrective turns.
To get the waypoint navigation software to this state we bdrracktracking and in-
stead counted the waypoint as reached whenever the plapengicular to the path
was crossed. This had the effect of slightly decreasing poé&iction accuracy, but
significantly decreasing average power to drive for a trial.

Our path planner worked well at its resolution. If we move ighler resolution
there is a danger of the following: the path planner choasestt in a position that
has sun but due to localization error the A100 ends up waitirige shade, and an
expected good path becomes very bad. With our path planherg tvas very high
cost to deviate from a straight path: the cost of fout #ns and at least 10 meters
increased distance. Therefore if there is not much time pienal path will choose
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Fig. 4: Simulations for 12:50 on 02-18-2012 (a and b) and 234 11-28-2011 (c
and d). When not much time is allowed the weight of the solaefmensures that
the cost of carrying them is greater than the benefit of saargp, however when
the robot is allowed to wait a while in the sun the benefit ofglacan be large.

to wait at the sunniest spot on the shortest path insteadvidtiteg to a sunnier spot
that is slightly off the path. It might be feasible to use stimreg such as Field D*
[3] to plan smoother paths that vary only slightly from theghst path.

Our simulation results show that with our platform and in émyironment we
tested, the addition of heavy commercial solar panels dsesecost on sunny days
in November and February only if the average speed is notnejto be greater
than 0.6734 m/s for the trial in February or greater than 1631/s for the trial in
November. These were both sunny days, but they were patigwhallenging for
sunny days: it was the dark part of the year, and the trials s@irted and ended in
the shade. We would therefore expect the addition of solaelgao be feasible in
many situations requiring higher average speeds.
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In our future work, we will investigate the effect of the varg sun angle on
our solar maps, as well as methods to use the known sun angigptove our
predictions. We also plan to further investigate methodspdimizing the hyperpa-
rameters, and methods to plan smoother paths on our solar map
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