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Abstract

We explore the problem of energy-efficient, time-constrained path planning of a solar pow-
ered robot embedded in a terrestrial environment. Because of the effects of changing weather
conditions, as well as sensing concerns in complex environments, a new method for solar
power prediction is desirable. We present a method that uses Gaussian Process regression
to build a solar map in a data-driven fashion. Using this map and an empirical model for
energy consumption, we perform dynamic programming to find energy-minimal paths. We
validate our map construction and path planning algorithms with outdoor experiments, and
perform simulations on our solar maps to further determine the limits of our approach. Our
results show that we can effectively use a solar map using only a simple current measurement
circuit and basic GPS localization, and this solar map can be used for energy-efficient nav-
igation. This establishes informed solar harvesting as a viable option for extending system
lifetime even in complex environments with low-cost commercial solar panels.

1 Introduction

Mobile robots have the potential to perform many critical outdoor tasks but their feasibility for long-term
deployment is limited due to energy concerns. A possible method to increase the battery life of robots
is by harvesting energy from the environment, e.g., with photovoltaic solar panels. Solar harvesting has
proven to be useful in marine and extra-terrestrial robotics applications (Sauze and Neal, 2011; Carsten
et al., 2007) which take place in open space. However, in applications where the robot must operate in
complex environments, such as urban search and environmental monitoring, the utility of solar harvesting is
not obvious. In this work we focus on extending the battery life of mobile robots using solar panels in such
settings.

We study techniques for energy-minimizing path planning for a mobile robot with a photovoltaic panel that

∗An earlier version of this paper appeared in ISER 2012 (Plonski et al., 2013). That version had no background section, a
significantly condensed solar modeling section, and it did not contain any of the June 9 solar maps or sections 5.2, 5.3, or 5.4.



uses recent measurements of solar intensity as its only source of information about future solar power. This
is an interesting problem because there are many applications where mobile robots do not necessarily have
the sensors or computing power to estimate solar maps using sophisticated techniques such as raytracing
on 3d models of the environment. However, energy-efficient paths are still desired. Intuitively, it seems
feasible for a good solar map of the environment to be built using only the recent solar measurements, if
the robot is in generally the same region for long enough. Our approach is well-suited for applications such
as environmental monitoring, data muling and patrolling in which a robot visits regions in the environment
repeatedly (Dunbabin and Marques, 2012). As demonstrated in Section 5.4, our algorithm can be used as a
subroutine for energy-efficient waypoint navigation in such applications.

The representative problem we address in this work is the following: suppose we have a mobile solar-powered
robot that has been performing a task while also logging the power received from an on-board solar array.
Each solar measurement is associated with an estimated robot position. Suppose the robot is required to
perform a new task that requires it to reach a goal position within some time limit. How can the robot
plan the path that minimizes its net energy consumption? We break this problem down into a mapping
segment where we construct a solar map from the solar measurements the robot has happened to take so
far (Sections 2, 3), and a planning segment where we use the solar map in combination with a power to
drive model to compute the best path to the goal (Section 4). We present results from experiments that
demonstrate the utility of our techniques (Section 4.6). We also present simulation results on our solar maps
to: demonstrate the benefit gained by adding solar panels on a robotic platform, demonstrate the benefit
gained by using our path planner over a näıve path planner, examine the robustness of our algorithm to the
constantly changing angle of the sun, and demonstrate a practical data mule application of our methods.
(Section 5).

1.1 Related Work

Energy efficient planning for mobile robots has received increased attention recently. The problem of mod-
eling the power consumption of motion, sensing, communication and embedded computing for commercially
available robots was studied by (Mei, 2006). These power models were used to compare various strategies
for high-level tasks such as coverage, exploration and networking between robots, with an aim to increase
the lifetime of the system.

Motion is a major source of power consumption for typical robots. The problem of minimizing the energy
consumption by optimizing the velocity profiles for a given path was studied by (Tokekar et al., 2011; Wang
et al., 2011; Kim and Kim, 2007). (Sun and Reif, 2005) studied the problem of finding energy optimal
paths between two points on terrains where the cost depends on friction and gravity and is thus direction
dependent. They presented an approximation algorithm for finding the minimum energy path, but did not
optimize the velocity profile along the path. (Liu and Sun, 2011) recently studied the problem of computing
energy-efficient paths and trajectory profiles by optimizing the parameters of Bezier curves using an energy-
based heuristic. However, the presented method is not guaranteed to minimize energy and the general
problem of simultaneously optimizing the path and velocity for given start and goal pose remains unsolved.

Energy efficient motion planning in the context of applications such as coverage is a subject of recent study.
An example is (Derenick et al., 2011) who studied the problem of maintaining persistent coverage using a
network of robots by deriving control laws that allow robots with depleted batteries to reach corresponding
access points. Similarly, (Jensen et al., 2011) presented strategies for reconfiguring robot formations for a
patrolling application, in the case where some robots run out of power and need to be replaced by fully-
charged robots.

Energy optimization for data mule applications has also been addressed recently. (Sugihara and Gupta, 2009)
present path planning algorithms for a data muling system with the goal of optimizing the trade-off between
the energy consumption of the sensors and latency of the data carried by the robot. Recently, (Bhadauria
et al., 2011) studied the problem of finding time-efficient trajectories for a mobile robot downloading data



from a set of wireless nodes, and by setting the parameters proportional to energy cost their approximation
algorithm can minimize energy instead of time. In these work, the energy consumption of the robot, however,
is not considered. In this paper, we present path planning techniques that can potentially be useful for such
applications.

The aforementioned works have not considered energy harvesting from the environment, and solar-aware
path planning has received limited attention. In extraterrestrial applications and some environments on
earth (e.g. in Antarctica (Ray et al., 2007)) collected solar energy can be treated as mostly independent
of the path chosen. The TEMPEST mission-level path planner (Tompkins et al., 2006) uses ephemeris
software to determine the position of the sun and then performs raytracing on known nearby terrain to build
a solar map that is used to estimate the energy cost of paths. This is feasible when nearby terrain is known
or when it can be accurately detected, but many otherwise feasible platforms for long-term environmental
monitoring lack the necessary sensors to do this. In this paper we focus on predicting solar power in complex
environments using only the robot’s position estimates and solar power measurements.

2 Background

Before we present our algorithms we first provide a brief overview of the factors that determine how much
solar power a photovoltaic panel generates, and we discuss methods that have been previously used to model
and predict solar power.

2.1 Photovoltaic Power Generation

The amount of current I a solar cell will output when it is fixed to a particular voltage V is the solution to
the equation

I = IL − Is(e
(V +IRs)/VT − 1)− V + IRs

Rp

where Is is the reverse saturation current of the diode and VT = kT
q which is known as the thermal voltage

(Lorenzo et al., 1994). IL is proportional to the number of photons that impact the solar cell, and therefore
so is I. I decreases with higher voltage, but the effect isn’t pronounced until the diode knee voltage is
reached at around 0.5 volts for a silicon cell. The knee voltage increases with decreased temperature, but
in general the voltage limit varies much less than the current. Some systems use Maximum Point Power
Trackers to adjust the voltage to the point where the cell puts out the most energy, and in these systems
temperature is an important factor when power modeling. Other systems enforce a constant voltage; when
this is the case temperature can be neglected as long as there is a sufficient margin between the diode knee
voltage and the induced voltage on the cell.

Because the voltage of an individual cell is low, cells are usually connected in one or more strings such that
each string is electrically in series. These strings have the property that the amount of current output is
limited by the weakest cell in the string (ignoring the effect of bypass diodes). The weakest cell could be the
cell with the smallest dot product between its normal vector and the sun angle vector, or it could be a cell
which happens to be in a shadow. We will see in Section 3 that this strong response to partial shading of
the array complicates our task of map construction.

Sunlight reaches a solar panel in three different ways (Goswami et al., 1999): If it comes directly from exactly
the part of the sky that contains the sun, it is called direct insolation. If it comes from any other part of
the sky, it is called diffuse insolation. Finally, if it comes from anywhere else (i.e. from terrain or objects),
it is called reflected insolation. Reflected insolation is most relevant when a solar panel is tilted towards a
reflective surface (such as snow), or near a reflective building. On a sunny day direct insolation is high and
diffuse insolation is low whereas on a cloudy day direct insolation is low and diffuse insolation is high (and
total insolation is much lower than on a sunny day). If a cell has no line of sight to the sun it is in a shadow,



and direct insolation drops to zero. However, for diffuse insolation to drop to zero the entire sky must be
blocked. Therefore we can expect shadows and therefore the correct solar map to be much sharper on a
sunny day than on a cloudy day.

2.2 Sunlight Modeling

If the amount of solar radiation incident on the panels is known, it is a simple matter to calibrate the
aforementioned model to the specific system and arrive at a solar power estimate. But how can we estimate
the amount of sun?

There is a large body of work on daily solar power prediction, mostly emphasizing static solar collector
installations. The position of the sun relative to the earth at any time can be determined from well-known
orbital mechanics equations (this was used for path planning in, for example, (Shillcutt, 2000)). Threlkeld
and Jordan (Threlkeld and Jordan, 1958) showed that once the elevation angle is known it is possible to
estimate for a clear day the degree of attenuation the direct radiation experiences by traveling through the
atmosphere (this attenuation is greater when the sun is lower in the sky because the radiation has to travel
through more atmosphere) from an assumed optical depth k. They also showed that the diffuse insolation on
a clear day is proportional to the direct radiation, with the parameter C that relates them varying with dust
and water vapor in the atmosphere. On a clear day diffuse radiation does not come equally from all parts
of the sky but instead comes more from the part of the sky close to the sun; Temps and Coulson (Temps
and Coulson, 1977) showed how to calculate diffuse insolation to a tilted panel on a sunny day, and Klucher
(Klucher, 1979) added a cloudiness parameter so that the model for diffuse can smoothly vary between a
cloudless day and a completely overcast day. On a completely overcast day direct insolation can be assumed
to be 0, but on a partly cloudy day predicting direct insolation becomes very difficult, particularly on short
times scales (as a cloud can quickly pass in front of the sun). Reflected radiation is often assumed to come
equally from everywhere on the horizontal plane with a reflectivity of 0.2 assumed for most ground or 0.8
for snow (Goswami et al., 1999). Direct insolation to a panel is scaled by the cosine of the sunlight incidence
angle, except when the angle is large a significant amount of solar radiation can end up reflecting off the
panel instead of reaching the cells.

For long term solar predictions an alternative to orbital and atmospheric models is to simply use recorded data
from weather stations. For example, the National Renewable Energy Laboratory built Typical Meteorological
Year (TMY) datasets for 1020 locations in the United States and its territories (Wilcox and Marion, 2008)
for use in renewable energy calculation. For any date in the constructed typical year there are hourly values
for sun angle, direct and diffuse insolation, and other relevant parameters for solar power calculations such
as temperature and wind. Each month for the typical year is selected to be the instance of that month in the
history of the weather station that was most typical, with an emphasis on solar parameters, so a particular
day can not be said to be typical but each month can.

When predicting long-term insolation it is important to not neglect solar panel fouling. If a robot is embedded
in an environment for a long time its panels will become coated in dust and in some parts of the world covered
in snow. Dust accumulation alone can cause insolation to decrease by more than 75% if it accumulates to
more than 250 grams per m2 (Mohammad, 1993).

The Cool Robot team (Ray et al., 2007) used Antarctic insolation data coupled with snow reflection estimates
(and estimated albedo of 90% with uniform scattering in all directions) to calculate how much sun they could
expect to get on a given day from their panels. From this information they determined that vertical solar
panels would be nearly optimal, and from estimates of solar panel efficiency and Maximum Point Power
Tracker efficiency they calculated how much energy they could expect to get in an Antarctic day. The
TEMPEST mission-level path planner (Tompkins et al., 2006) performs raytracing from the position of the
sun but it is unclear exactly how they convert their binary shadow map into estimates of solar power.

In this work we propose a data-driven approach to both the sunlight modeling problem and the power



(a) Clearpath Husky A100 (b) Test Site

Figure 1: Our configuration of the Clearpath A100 and a top-down view of our test site near the McNamara
Alumni Center.

modeling problem, sidestepping most of the subtleties in short term prediction. However, use of the TMY
database for long term power calculations is very much in the spirit of what we do in the short term, and it
is in fact how we chose our solar panels (see Section 4.1 for more detail on our panel selection).

3 Solar Modeling

In this section we introduce the method we use to estimate how much solar power the robot will receive
at a given position. As described earlier, the input for modeling the solar power is a series of solar power
values associated with the corresponding robot position. Given this data, a solar map can be built through
regression. We use Gaussian Process regression which is, in general, a non-parametric regression technique.
For a picture of our mobile robot and a satellite image of our testing environment see Figure 1. For example
maps that we constructed in this environment see Figure 2.

An advantage of using regression for solar modeling is that we have an estimate for how much solar power
we expect to collect at any point regardless of the amount of information we have. This estimate approaches
the prior expected value as we get farther from sampled points. Gaussian Process regression in particular
outputs the entire probability distribution of a sample point, which can be valuable information for an
exploration algorithm. We utilize this knowledge of uncertainty in Section 5.4.

3.1 Gaussian Process Regression

A Gaussian Process (GP) is defined as a set of random variables such that any subset of the random
variables has a joint Gaussian distribution (Rasmussen and Williams, 2006). GP regression is a general
regression technique used to predict the most likely value of a function at any point given measured values
of the function at some other points, without assuming an explicit parametric model for the function. GP
regression, however, requires a suitable covariance function to model the joint Gaussian distribution for
points. For more details on GP regression in general see (Rasmussen and Williams, 2006).

Gaussian Processes are recently finding increasing use within the robotics community Gaussian process
techniques have been used for localizing a mobile device using wireless signal strengths measured by the



(a) Clear Day Solar Map (b) Overcast Day Solar Map

Figure 2: Solar map constructed for 13:42 on November 18, 2011 (a) (this was a sunny day), and solar map
constructed for 11:22 on September 16, 2011 (b) (this was a cloudy day). Both solar maps are overlaid with
their source paths. The cloudy map was built by sampling with only a single solar panel.

device (Ferris et al., 2007), and for the converse problem of localizing a wireless signal source using various
measurements of wireless signal strength at different positions (Fink and Kumar, 2010). Gaussian processes
have been used to approximate gas concentration (Stachniss et al., 2009) and environment traversability
(Martin et al., 2012). Also, the inherent estimate of uncertainty that comes from GP regression has been
used to guide mapping of benthic habitats (Rigby et al., 2010) and detailed underwater structures (Hollinger
et al., 2012).

In our application we approximate the solar field as a spatial Gaussian process. We associate each mea-
surement of solar power with a training position and use GP regression to predict the distribution of solar
power at any desired test position. When all of the solar cells are horizontal, or if they are otherwise suitably
symmetric, the rotation of the robot can be ignored in these position measurements. This makes the solar
map easier to learn by eliminating a dimension along which solar power can vary. Our path planning in this
paper neglects the solar map’s time dependence on the changing position of the sun. This is justified when
the robot stays in the same environment each day, and can therefore build a separate solar map for various
discrete time segments. In Section 5.3 we examine in detail the implications of our static solar assumption.

We represent the solar field as a GP where the covariance between any two points depends only on the
distance between them, through an assumed function k(r). A crucial part of selecting the correct covariance
function is selecting the correct length hyperparameter ℓ which scales the actual distance r. The selection
of ℓ determines how quickly our estimate of solar power regresses to the prior mean, as we move away from
previously sampled positions. For an illustration of this see Figure 3.

3.2 Solar Map Construction

Our system has panels that are all aligned and horizontal, each with a maximum power point voltage of
17.2v. These panels are connected in parallel to a 12v battery, so our measure of panel current to the battery
is directly proportional to solar intensity and also directly proportional to solar power into the system. We
connect a current sensor to measure the current flowing from the panels in to the battery.
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(a) length = 3 meters
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(b) length = 9 meters
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(c) length = 27 meters

Figure 3: An example of the output of 1d GP regression using ℓ = 3m, 9m, and 27m. The covariance
function is the exponential function, and noise variance as well as prior mean and variance are set using the
procedure in Algorithm 1.

The current sensor is read at every 50 ms, so the input information for our solar map is a long path with
noisy 20Hz measurements, each measurement associated with a position on the path. This accumulates to
a very large number of measurements if the robot is embedded in the environment for a long time. As GP
regression relies on matrix multiplication of all training points, using all measurements as individual training
points becomes infeasible. Fortunately, since we only care about associating solar current to (x, y) position
we can discard information about rotation and time and combine measurements with similar (x, y) position.
In this way the number of measurements considered by the GP regression is bounded by the size of the
environment rather than the length of time the robot is collecting data. Also it is valuable for optimizing the
hyperparameters of the GP for measured positions to be weighted equally instead of weighted in proportion
to the amount of time the robot has spent at a location.

In our implementation we placed in a bucket all measurements that were within 0.3 meters of the first
measurement, and then removed them from the list and repeated until every measurement was in a bucket.
The bucket’s position was set as the centroid of the positions of the measurements in it, and its value was
set as the mean of the values of the measurements in it. We calculated the variance of each bucket from the
variance of the measurements in the bucket, treating the bucket solar current as an average of uncorrelated
random variables. Then for the regression we treated the noise variance as equal to the average of the
variances of the buckets. This was again to induce more balanced weighting of different areas; if the robot
had waited a long time at the same position we did not want the bucket containing that position to be
significantly more valuable than nearby buckets because still only a small portion of the possible points that
could go into that bucket would have been explored. The prior mean and prior variance were computed
from the mean and variance of the set of buckets. See Algorithm 1 for pseudocode describing our bucketing
procedure.

3.3 Covariance Function Selection

To perform GP regression we need a covariance function. For this we considered different versions of the
Matérn covariance function (detailed in (Rasmussen and Williams, 2006)). The Matérn class of covariance
functions is given by:

k(r) =
21−v

Γ(v)

(√
2vr

ℓ

)v

Kv

(√
2vr

ℓ

)

where v is a positive parameter that affects the smoothness of the process, ℓ is the positive length parameter,
andKv is a modified Bessel function. If v is 1/2 the function becomes the exponential covariance function, and
as v → ∞ the function becomes the squared exponential covariance function. Other than the exponential
and the squared exponential, the most commonly used Matérn covariance functions are where v = 3/2
and v = 5/2, so those are the covariance functions we tested in addition to the exponential and squared
exponential. We considered solar data collected in the field near the McNamara Alumni Center at the



Input: RAWLIST ; /* list of (x y solar) triplets */

TRAININGSET = ∅;
BUCKETVARIANCES = ∅;
while RAWLIST 6= ∅ do

remove first node s from RAWLIST;
BUCKETSET = {s};
forall the m remaining in RAWLIST do

if distance from m to s is ≤ dthresh then

add m to BUCKETSET;
remove m from RAWLIST;

end

end

c = centroid of BUCKETSET;
add c to TRAININGSET;
v = variance of solar amplitudes in BUCKETSET;
add v to BUCKETVARIANCES;

end

Output:
TRAININGSET ; /* list of (x y solar) triplets */

σ2
n = mean of BUCKETVARIANCES ; /* variance of additive Gaussian noise */

mp = mean of solar amplitudes in TRAININGSET ; /* prior mean of solar field */

vp = variance of solar amplitudes in TRAININGSET ; /* prior variance of solar field */

Algorithm 1: This algorithm generates the input to Gaussian Process Regression

University of Minnesota (see Section 4.2 for a detailed description of the test environment). This is a savanna-
type environment, with scattered trees. Note that the type of shadow-casting object in the environment has
little effect on sharpness of shadows – the only effect is on their position. This is because of the strong
effects of partial shading (see Section 2.1). We chose this environment because we expected the shadows
of its scattered trees to be difficult to learn – more difficult than the larger uniform block shadows that we
would encounter near buildings or dense forest.

To optimize the Matérn function’s length hyperparameter we performed numerical gradient-descent searches
to maximize the likelihood of the observed values under the assumption that the field is in fact a GP with the
given covariance function. See Figure 4(a) for the optimized length hyperparameters. Then to decide which
covariance function was the best we performed cross validation on 16 solar power data sets we collected by
driving manually, on various days and in various weather conditions, and looked at the resultant error. We
wanted to know how well the information from a long training path would predict the solar power on a short
test path, so for the cross validation we removed from the training path a continuous segment with length
a tenth that of the total path, and observed the difference between the actual values along that segment
and the values predicted by GP regression from the remaining part of the training path. This process was
repeated 1,000 times for each data set. We recorded both the mean squared error and the mean of the
squared error normalized by the predicted variances at the test points. See Figure 4(b) for squared error
results and Figure 4(c) for the normalized results.

We found that using v = 1/2 resulted in the lowest squared error on all three cloudy day trials, and generally
resulted in the lowest squared error on the sunny day trials, particularly for the trials with the most complete
coverage of the domain (v = 1/2 was the best on 4 out of the 6 trials with more than 10,000 raw input
measurements). However, the normalized error with v = 1/2 was usually greater than 1, occasionally by a
significant margin, suggesting that the length parameter found using maximum likelihood was too high and
we were somewhat overfit.

On some days the exponential covariance function had the most cross validation error by a significant
margin, but on these days as on all sunny days tested the maps constructed with the other covariance
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(a) optimized length parameters
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(b) cross validation mean squared error
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(c) cross validation normalized mean squared error (d) example map with v = 1/2

(e) example map with v = 3/2 (f) example map with v = 5/2

Figure 4: (a) (b) and (c) are the maximum likelihood length parameters, cross-validation mean squared error,
and normalized cross-validation means squared error, for the same 16 data sets. The first three are cloudy
days, and the rest are sunny days. The last three are the high quality data sets used to make Figures 11,
and the other trials with more than 10,000 input measurements are #5 and #10. (c) (d) and (e) are three
maps built for 12:12 on November 12, which is index 6 in the cross validation plots. Although the Matérn
with v = 5/2 has the least cross validation error, the exponential covariance function (v = 1/2) is the only
covariance function tested to not suffer from significant overshooting at boundaries.



(a) Inaccurate solar map
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Figure 5: Solar map constructed from measurements starting at 16:24 on October 9th, 2011, and histogram
of bucket values from these same measurements. This was late enough in the day that the positions of
shadows changed noticeably in the duration that measurements were made.

functions that the exponential tended to have problems with overshooting at the sharp boundaries between
sun and shade. This sharpness was exacerbated by the strong effect of partial shading of a series of solar cells,
recall Section 2.2. See Figures 4(d), 4(e), 4(f) for examples of the overshooting problem. This overshooting
made it so that the positions with the most predicted solar power were close to shadow boundaries, and
therefore planned energy-minimal paths were pulled towards boundaries. As a real system always has some
localization error, a better strategy is to stay away from shadows if possible. This is the behavior that results
when we use v = 1/2 in our regression, so that is what we did when we constructed maps for path planning
purposes.

Holding v = 1/2, the most likely length varied between 2.05 meters and 12.65 meters on sunny days, and
between 3.68m and 18.67m on cloudy days. This difference is because diffuse insolation dominates over
direct insolation on cloudy days, and diffuse insolation varies slower than direct with changing position. See
Figure 4(a) for a plot of all optimized characteristic length parameters. At first glance this seems like a large
variation in length, but the data from the densest samples (trials #10 and #14-16) had optimal lengths in
the tight range between 8.37m and 10.28m. This suggests that 9m is a good first estimate of length for a
sunny day. Then if there is enough training data with the current conditions the length should be adjusted.
The only other sunny data set with more than 10,000 measurements was late enough in the day (beginning
at 16:24 CDT on October 9th) that the sun was at a noticeably different position at the beginning and the
end of the data set, and therefore shadows that were contiguous at any one point in time became jagged
and misaligned (see Figure 5(a)). The correct way to deal with these outdated measurements is by adding
process noise, not by decreasing the length. We have less data for overcast conditions but we expect the
roughly 16.5 meter length found for the first two sets to be more typical than the 3.68m length found for
the third one.

Part of the reason for the high normalized error when performing cross validation may be that while GP
regression predicts a Gaussian distribution for a given point, the true expected distribution on a sunny day
is distinctly bimodal, with separate peaks for the case where the point is in the sun and the case where the
point is in the shade. For an illustration of this see Figure 5(b).



4 Path Planning

In this section we show how we use a solar map to plan the path that will reach the goal within the time
limit while consuming the least amount of energy overall. It is straightforward with our approach to prune
all paths that completely deplete the battery mid-trip. However, as the time scales considered in this work
are fairly short, this pruning was not necessary. We envision our algorithm will be used as a subroutine for
a global mission planner that attempts to maximize lifetime. Such a planner would consider battery state
and weigh the cost vs. benefit for going to particular positions at particular times, and would likely consider
separate solar maps for different times of the day. The purpose of this planner is to allow the cost of going
to a particular position at a particular time to be estimated accurately.

4.1 Our System

The chassis of our system was a Husky A100, built by Clearpath Robotics1. The A100 is a six wheel, two
motor, differential drive machine. The datasheet mass is 35 kg, the maximum payload is 40 kg, and the
dimensions are 0.860 meters long by 0.605 meters wide by 0.350 meters tall. In its experimental configuration
the A100 was powered by a single lead-acid battery that was nominally 12v and 21 amp hours. See Figure 1(a)
for a photo of the A100 during one of our experiments.

The solar panels used by our system were two SPM020Ps from Solartech Power2. The SPM020P supplies 20w
at the optimal voltage of 17.2v under standard test conditions of 1000 w/m2 insolation and a temperature
of 25oC. The panel is wired as a single series string with 36 cells in it. The dimensions are 560x360x18(mm),
and each panel nominally weighs 2.5kg.

We placed the panels horizontally on the robot for ease of mounting, for quality in overcast conditions,
and to eliminate the dimension of panel rotation in the learned solar map. Both panels were connected in
parallel with the battery; therefore solar intensity, solar panel current, and solar power into the battery were
all proportional. Battery voltage and motor current measurements were provided by the A100, and summed
current from the both panels to the battery was measured with a hall-effect current sensor.

From the TMY3 dataset for the Minneapolis - St. Paul International Airport we estimated that each panel
should provide on average 100.4 watt hours per day in June and 17.9 watt hours per day in December, if it
has line of sight to the sun the whole day. If the panel is in the shade but can still see most of the sky we
would expect 40.0 watt hours per day in June and 8.0 watt hours per day in December. This means that
with both panels and given our power to drive model we calibrate in Section 4.4, we would expect the A100
to be able to travel 7.2 kilometers on an average day in June using only solar power (this analysis neglects
the idle current draw of the electronics).

Localization of the robot was achieved by using an Extended Kalman Filter to fuse GPS measurements with
wheel-encoder propagation.

4.2 Test Environment

Our representative test environment was the field next to the McNamara Alumni Center, on the Minneapolis
campus of the University of Minnesota (see Figure 1(b)). The field is roughly 40 meters by 30 meters and
it is relatively flat, with uniform short grass. There are not enough nearby objects to interfere with GPS
localization but there are scattered trees that provide an interesting solar map. The ground is quite flat and
the grass is maintained at a short height so the power to drive does not significantly change depending on
position and orientation.

1http://www.clearpathrobotics.com/
2http://www.solartechpower.com/



While our calculated power to drive parameters and solar map parameters are likely to change in other
environments, the methodology we present here to obtain those parameters remains the same.

We performed our experiments on dry days when there was no snow on the ground. We expect power to
drive to significantly change in wet weather or if there is accumulated snow.

4.3 Power To Drive Model

Our robot is differential-driven, so it can turn in place, and turning is a relatively energy intensive operation.
For our robot the energy consumption of a path with a certain top speed is well represented as a short initial
spike during acceleration, and then a steady cost per meter traveled. Therefore we model the planned path
as time-stamped waypoints with straight line segments connecting them, each line segment traversed at a
constant speed with instantaneous speed changes between line segments. We model the energy sent to the
motors as the following: At any particular speed, there is a constant cost per meter traveled Cs, a constant
cost per radian rotated Cr , and an initial acceleration cost Ca. When transitioning from a non-zero speed,
the acceleration cost is the Ca for the new speed minus the Ca for the old speed, but with a minimum
cost of 0. This makes sense if we assume that acceleration cost is proportional to kinetic energy. We can
mathematically state the cost of traversing line segment li:

costi = Cs(speedi)|li|+ Cr(speedi)|θi − θi−1|+max(Ca(speedi)− Ca(speedi−1), 0)

The cost constants as functions of speed are specific to the robot and the terrain. The terrain where our
experiments were conducted was flat and uniform, so in this work we do not consider changes in elevation,
friction, or rolling resistance.

The total cost of a path is given by the sum over the path
∑n−1

i=0 costi minus the expected amount of solar
energy collected while traversing the path. An idle power draw constant can be subtracted from the solar
power; we do not consider idle power draw because our focus is on path planning and idle power does not
affect the optimal path to reach the goal in the time scales we consider.

4.4 Power To Drive Calibration

We controlled the forward movement of the A100 by directly setting the motor voltage. We found that this
method was more energy-efficient than using a closed loop PID speed controller. For a particular motor
voltage and on particular terrain, the A100 travels at a particular steady-state speed and consumes a steady
amount of energy per unit distance traveled, after a brief acceleration period. To characterize the steady-
state cost and acceleration cost we drove straight at a variety of commanded motor voltages from a variety
of start positions across the test domain, and fit a line to the plot of cumulative cost vs. distance for each
voltage. The slope of the line determined the steady state cost and the intercept determined the acceleration
cost. Then we performed linear regression on the steady state costs as functions of speed and quadratic
regression on the acceleration costs as functions of top speed, and ended up with the following equations for
our parameters Cs and Ca (see Figure 6):

Cs = (−17.6624 ∗ speed+ 139.4576) Joules per meter

Ca = (321.0671 ∗ speed2 − 285.3912 ∗ speed+ 154.9553) Joules to accelerate

Then to characterize turning cost we commanded a tight left turn and tight right turn, and examined the
steady state energy per radian.

Cr = 406.5963 Joules per radian
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Figure 6: Power To Drive Test Results

4.5 Algorithm

The expected value for any particular point in our solar map can be determined in closed form, however
there is no convenient closed form model for the entire map as a whole; that is, there is no general geometric
model we can use to represent our environment. Therefore some amount of discretization of the solar map
is necessary for us to do planning. It is possible in this domain to plan on a set of sampled actions or path
shapes (e.g. with an sampling based planner) but since the state space is relatively small we use a complete
grid. We then perform dynamic programming to compute the optimal solution for a given resolution. We
discretize both space and time, and we also have a dimension in the dynamic programming table for heading
and a dimension for whether the robot is moving or the robot is waiting, to account for the cost to rotate
and the cost for initial acceleration. These four dimensions ensure that the output path is always optimal
in its resolution, according to our power to drive model. The trajectories generated by our algorithm move
at a constant speed when they are on Manhattan edges and another faster constant speed when they are on
diagonal edges, such that the time to get from a position to any adjacent position the same.

We observe from the output of this algorithm that if the solar intensity at the start point is not equal to the
solar intensity at the end point, there can be only one wait point that we denote by W . That is, the robot
moves continuously before W and cannot stop to collect additional solar at any point after W . Even if the
solar intensity is equal at the start and the end, this means the path with one wait point W is only one of
many optimal paths. As more time is allowed this W changes position along the path: At first there is no
time to wait anywhere and the entire path is executed at max speed. Then there is time to wait but not
enough to compensate for the energy loss from having to re-accelerate, so W is selected at the start point or
the end point. Then finally there is enough time to wait somewhere in the middle for long enough to recoup
the extra acceleration cost and possibly enough time to allow deviation from a shortest path to a place that
receives more sunlight, so W is selected at the point along the optimal path that is expected to receive the
most solar radiation. Note that this single wait point optimality breaks down if we consider the possibility
of overcharging or depleting the battery along the route.



Solar
Duration

Expected Actual Expected Actual Control
Duration

Actual

Trial Solar Solar Net Cost Net Cost Trial Net Cost

A 401 s 7, 025.5 J 6, 974.1 J 577.16 J 744.6 J F 45 s 6, 295.4 J

B 400 s 6, 606.6 J 6, 828.6 J −3, 265.9 J −3, 256.7 J
G 19.1 s 2, 888.1 J

C 104 s 1, 148.3 J 611.26 J 879.99 J 2, 253, 4 J

D 104 s 1, 600.9 J 1, 297.6 J 2, 907.3 J 3, 480.3 J
H 30.4 s 3, 530.4 J

E 104 s 1, 600.9 J 1, 156.2 J 2, 907.3 J 2, 822.5 J

Table 1: Path execution results. On the left side of the table are the five planned and executed solar-aware
paths, sorted by start position and end position. On the right side of the table are the three shortest paths
executed with no panel, from the same start and end positions as the trials directly to their left. Observe
that, as expected, the solar powered robot performs best when it is allowed time to deviate from the shortest
path and charge its battery in the sun.

4.6 Experiments

At 13:10 on February 18, 2012 we drove the A100 around the field in Figure 1(b), optimized the length
hyperparameter for that dataset with an exponential covariance function, used GP regression to build a
solar map, planned paths with our planner detailed in Section 4, and then executed the paths. The path
used to build the solar map was a manually driven sparse coverage of the environment, which encountered
each of the major shaded regions. We demonstrated in Section 3 that our method of generating the solar map
is sound; here we demonstrate that our path planning method is sound when given a reasonably accurate
but low-detail solar map. The optimized length hyperparameter was 3.158m. We later discovered that this
length hyperparameter was probably too low; see Section 3.3. The A100 had some localization error even
when GPS worked well, so a fairly low spatial resolution of 5m was used. Temporal resolution was set to 8
seconds. To calculate the expected solar current in a grid square the expected solar current was calculated
on a higher resolution 1m grid and then downsampled. In addition to the planned solar-aware paths the
A100 also executed shortest paths after we removed the solar panels (slightly decreasing the power to drive
due to decreased weight) from the same start position to the same end position. These paths provide a
comparison, allowing us to directly demonstrate the utility of the added panels.

One of the advantages of our dynamic programming approach is that obstacles and other environmental
parameters which affect the quality of a path can be incorporated into the planner simply by changing the
corresponding cost in the table. In our experiments we planned using only the solar maps because the terrain
was uniform and obstacles were sparse.

See Table 1 for path summaries, and Figure 7 for plots of the planned and executed paths.

On February 18 the system did not lose much accuracy by neglecting to consider the sun’s movement, though
the solar map was constructed for 13:10 and the last solar trial (trial E) began at 14:19. The impact of
moving shadows may have been mitigated by the fact that shadows were sparse due to bare branches on the
trees. In Section 5.3 we address this concern more fully.

Our power to drive model was reasonably accurate. It tended to underestimate power to drive but not by
much: on average it missed by 396.5 J, which was on average 11.2% off from the true value. It underestimated
four times and overestimated once. This indicates that our learned parameters were correct and that the
A100 waypoint navigation software was not performing too many corrective turns. To get the waypoint
navigation software to this state we banned backtracking and instead considered a waypoint as reached
whenever the plane perpendicular to the path was crossed. This had the effect of slightly decreasing solar
prediction accuracy, but significantly decreasing average power to drive for a trial.

Our path planner worked well at its resolution. If we move to higher resolution there is a danger of the
following: the path planner chooses to wait in a position that has sun but due to localization error the A100
ends up waiting in the shade, and an expected good path becomes very bad. With our path planning there



(a) Solar map at 13:10 on February 18, 2012, with planned paths
in red and executed paths in blue
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(b) Trial C Power
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(c) Trial C Solar
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(d) Trial D Power
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(e) Trial D Solar

Figure 7: Planned solar-aware paths and example trials. Note that in trial D the planner chose to wait at
the beginning given the information it had but it turned out the position at the end of the path received
more solar power.



was very high cost to deviate from a straight path: the cost of four 45o turns and at least three or four
meters increased distance. Therefore if there is not much time the optimal path will choose to wait at the
sunniest spot on the shortest path instead of deviating to a sunnier spot that is slightly off the path. This
is a common problem when using a grid-based planner.

5 Simulations

We saw from the previous section that our system performed well at a particular time on one day, but it
was less useful the less duration we allowed for the path because there was less time to stop in the sun and
accumulate energy. In order to understand the limits of our approach, how much extra time the solar robot
needed to require less energy than the non solar robot, we ran simulations where we planned paths from
the same starting point to the same ending point but varied the time limit. We used similar simulations to
compare our planner with the näıve shortest path planner.

We also wanted to understand better how the movement of the shadows during the day would affect path
planning, so we ran simulations on several solar maps collected on the same day and examined the per-
formance of paths planned using a solar map from a different time from the one the path is simulated
on.

Finally, we provide a demonstration of a data mule application where we use our maps construction and
path planning method to repeatedly find the most efficient path between two waypoints, using only the solar
information available at each step.

5.1 Power Comparison

We ran simulated comparisons between our solar powered robot using our path planner and our robot with
no panels driving straight towards the destination. We built a separate power to drive model for the robot
lacking panels so that we could compare the benefit of additional power with the cost of additional weight.
We picked a start position and end position, planned the optimal solar-aware path for a range of time limits,
and compared the cost to drive straight without a panel with the distribution of likely solar robot costs. For
these simulations we did not consider localization errors, so we increased the resolution of our planning grid
to 2 meters per square, 3 seconds per square. For the first two simulations we intentionally chose start and
end positions in the shade, to see how the system would perform under somewhat adverse conditions. The
third simulation was more of a best-case analysis, and it ended in the sun.

First we considered a robot traveling from the southwest part of the trees to the northeast part of the trees,
at 13:10 on February 18 (the same day as our path execution trials). For details of this simulation see
Figures 8(a) and 8(b). The start position was (187,−106) and the end position was (207,−86). At a speed
of 1 m/s we expect the baseline path to consume 3,065.0 Joules. For the solar robot to be on average more
energy efficient than the baseline it requires at least 48 seconds to execute its path. This is an overall speed
of 0.5893 m/s. For the solar robot to be more energy efficient with 97.7% confidence, it requires at least 57
seconds which is an overall speed of 0.4962 m/s.

Second we considered a robot traveling south through the shade of the west line of trees, at 13:42 on November
28. For details of this simulation see Figures 8(c) and 8(d). The start position was (193,−80) and the end
position was (193,−100). At a speed of 1 m/s we expect the baseline path to consume 2,211.9 J. For the
solar robot to be on average more efficient than the baseline it requires at least 87 seconds which is an overall
speed of 0.2381 m/s. For the solar robot to be more efficient with 97.7% confidence it requires at least 138
seconds which is an overall speed of 0.1449 m/s.

Third we considered a robot traveling from the northwest part of the trees to east of the southeast part of



the trees, at 13:41 on June 9. For details of this simulation see Figures 8(e) and 8(f). The start position
was (185,−80) and the end position was (221,−110). At a speed of 1 m/s we expect the baseline path to
consume 4,947.0 J. The minimum amount of time the solar robot can take to reach the destination using our
planner is 54 seconds (overall speed is 0.8678 m/s), and when given this time limit it requires only 4,890.8
Joules on average. For the solar robot to be more efficient than the baseline with 97.7% confidence it requires
at least 60 seconds which is an overall speed of 0.7810 m/s.

The first two simulations were sunny days but they were particularly challenging for our system as sunny
days go: it was the dark part of the year and the paths both started and ended in the shade. Even given
the challenges the heavy commercial solar panels were feasible additions to the Husky A100 as long as the
average speed required was not greater than around 0.5 m/s. The third simulation was close to optimal
for the system, and the solar system performed better than the non solar system even when it was allowed
almost no extra time to wait in the sun.

5.2 Comparison with Näıve Solar

In this section, we explore the utility of using solar maps for path planning by comparing our planner with a
näıve planner which plans for shortest paths but collects solar energy along the way. In general, it is difficult
to say exactly how much better on average our path planner performs than a näıve planner which doesn’t
have any knowledge of the solar map; such a statement heavily depends on the underlying environment.
However, we can present representative situations where the näıve strategy performs poorly compared with
our planner. A shortest path planner will always perform poorly if the entire shortest path is in the shade,
and depending on exactly how näıve it is it may perform poorly when both the start position and the end
position are shaded, even if it passes through sun.

We simulated the situation where the entire shortest path was in the shade for the solar maps built for June
9th at 16:23 and 18:20 (see Figure 11), and we found that, as expected, the more time we allowed the better
our planner performed compared with a näıve strategy that performs half its waiting at the start point and
half at the end point. In fact, at 18:20 the näıve strategy required 297 seconds to even perform better than
the non-solar robot, compared with the 204 seconds required by our strategy. See Figure 9 for more details.

We also performed a more rigorous test with random start and end points on the solar map constructed
for June 9th at 16:23, and found that as expected the solar aware path is never worse than the näıve path.
When no wait time is allowed the solar aware path is only slightly better than the näıve path, but when the
wait time increases the vast majority of the solar aware paths improve upon their näıve counterparts. See
Figure 10 for details.

5.3 Changing Solar Map

We have so far neglected the fact that any constructed solar map may be out of date by the time a planned
path is executed on it, because the sun’s position constantly changes. To examine how this affects the quality
of our planned paths we collected very high resolution solar data at three times on one sunny day, and used
the data to build three very high resolution maps. Then for each pair of maps we planned 100 paths on the
map and compared the actual costs of the paths with the estimated costs. The start points, end points, and
path durations were selected randomly and we used our dynamic programming path planner.

There are two main ways that our solar maps change throughout a consistently sunny day: shadows rotate
around the objects that cast them, and the amount of solar radiation incident on our flat panel changes
with the sine of the solar elevation angle. Accounting for the former effect is quite difficult and beyond
the scope of this paper, but the latter is a relatively easy scaling adjustment. To perform this correction
we did not calculate the solar elevation angle change; this wasn’t in the spirit of our data driven approach.
Instead we looked at the 90th percentile solar power bucket for both maps and scaled the magnitude of the
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Figure 8: Simulations for 13:10 on 02-18-2012 (a and b), 13:42 on 11-28-2011 (c and d), and 13:41 on 6-9-2012
(e and f). When not much time is allowed, the weight of the solar panels ensures that the cost of carrying
them is greater than the benefit of solar power. However when the robot is allowed to wait a while in the
sun, the benefit of panels can be large. The changes in slope are from changes in W , the single waiting
location; as more time is allowed, a farther location can be chosen as W if it is better in terms of net energy.
As the time limit increases without bound, the wait position will become the single position with the most
sun.
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(a) 16:23 Trial
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(b) 18:20 Trial

Figure 9: Comparison simulations between our planner and the näıve shortest path strategy using the solar
data from June 9 at 16:23 (left) and 18:20 (right). The 16:23 path was from (187, -70) to (187, -102) and the
18:20 path was from (183 -116) to (225, -116). Space discretization was 3 meters and time discretization was
2 seconds, and the full solar data set was made available to the planner. The näıve simulation and non-solar
simulation both traveled at 2/3 m

s ; this was to ensure that the näıve path was in the set of possible paths
our planner could output.
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(a) Minimum Time Paths
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(b) Minimum Time + 200 seconds
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(c) Minimum Time + 400 seconds

Figure 10: Results of randomized comparison simulations between our planner and the näıve shortest path
strategy. The näıve path was restricted to lie along the paths our planner can output; i.e. it was the shortest
path on the 8-connected grid. The solar map used was June 9 at 16:23, and 100 random start and end
positions were selected. Space discretization was 3 meters and time discretization was 2 seconds. First no
extra time was allowed beyond the time required for a shortest path, then we allowed 200 seconds of waiting
and 400 seconds of waiting. At our level of discretization the näıve path never performed better than the
planned path, and as more time is allowed it performs increasingly worse in almost all cases. Note that even
when no wait time is allowed, we can frequently perform better than näıve. This is because, although we
only have time for a shortest path, there are frequently several shortest paths to choose and where näıve
arbitrarily picks one our strategy makes an intelligent selection based on their relative merits.



(a) 13:42 Solar Map (b) 16:23 Solar Map (c) 18:20 Solar Map

Figure 11: Three solar maps constructed for the McNamara Alumni Center on June 9, 2012

13:42 16:23 18:20 13:42 16:23 18:20

13:42 100% 51% 16% 100% 59% 26%
16:23 78% 100% 16% 83% 100% 24%
18:20 55% 52% 100% 77% 74% 100%

Table 2: Percentage of simulated trials with ≥ 95% of expected solar energy. The row selects the map that
was used for planning and the column selects the map that the plan was executed on. The left side plans
were executed exactly and the right side plans were executed with a wait heuristic where, if a position with
more sun than the expected wait position W was encountered before W , all waiting was performed at this
position instead of at W .

planning map to match the magnitude of the simulated map. This is justified when we can expect our robot
to encounter full sun at different times of the day because in such a situation the robot should not have
trouble learning the scaling factor, even if it doesn’t know the precise solar elevation angle.

We performed simulations where the executed path was exactly the same as the planned one on the out-of-
date solar map, and there were frequent situations where the robot passed by perfectly sunny places without
stopping and then ended up waiting in the shade. This suggests that some online planning can be useful
here, especially when our planning map is unreliable. So we also performed simulations where the robot
obeyed the following basic heuristic (recall that any optimal path has a single wait point that we denote
here as W ): If the robot encounters a point A along its path before it encounters W such that the benefit
from waiting at A is greater than the expected benefit from waiting at W , the entire wait time at W is
transferred to a wait at A. This heuristic ended up markedly increasing the quality of the executed paths
that were planned from out-of-date solar maps.

The three solar data sets that we used for these simulations were from June 9, 2012, at 13:42, 16:23, and
18:20. See Figure 11 for solar maps constructed from these data sets. See Figures 12(a) and 12(b) for
scatterplots of the expected solar energy collected during each simulated trial compared with the actual
solar energy collected. We recorded the percentage of simulated trials where the actual solar power collected
was within 250 Joules of being ≥ 95% of the expected solar power output by the path planner; for these
results see Table 2. Note that even when we plan from and execute on the same solar map, expected solar
power can differ from actual; this is because of our space discretization. Also note that it works much better
to plan trajectories when the sun is low and the shadows are long and then execute them when the sun is
high, than vice versa. In general our planner augmented with the waiting heuristic performed fairly well
when the planning map had longer shadows than the simulated map, and relatively poorly when the reverse
was true.
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(a) predicted vs. actual solar energy (no heuristic)
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Figure 12: Scatter plots of expected solar energy gain vs. actual solar energy gain for 100 simulations on
the solar maps constructed for June 9, 2012. Rows are the planned maps, columns are the simulated maps,
both selected from the times 13:42, 16:23, and 18:20. The x axis represents expected amount of solar power,
and the y axis represents actual simulated solar power, both divided by 10,000 Joules.

5.4 Data Mule Simulation

Here we present an example of how our algorithm can be useful for a practical data muling problem, where
the robot starts with no solar information: Suppose we have a robot with a satellite transmitter collecting
data from two sensors and transmitting it elsewhere, and this robot needs to visit a sensor once within a fixed
interval. This robot is dropped at one of the sensor positions. The robot starts with no prior knowledge of
the environment. However it has perfect localization and it can measure how much solar power it is receiving
at its current location. Our strategy to find a tour is the following: at each iteration, build a solar map with
all the solar information collected up to that iteration (as given in Section 3), and then plan and execute the
solar aware path using the algorithm presented in Section 4. During execution of the path, the robot will
collect more solar information which will be used to construct an improved map for the next iteration. By
using the upper 2σ bound to construct the map that we feed into the planner, we can induce exploration of
uncertain terrain.

We simulated this strategy for 10 iterations (5 visits of each sensor) using the solar map constructed for
July 9th at 18:20 as the ground truth, using (175 -82) and (195 -102) as the sensor positions. The robot
started at (175, -82). The data collection interval was chosen to be 201 seconds. We used the optimized
prior mean, prior covariance, and ℓ that were computed for that solar map. Our strategy converged at paths
six and seven (marked by blue and green paths in Figure 13); after this point it did not explore anymore and
instead went on path six whenever it was going northwest and path seven whenever it was going southeast.
Figure 13 presents further details.

This simulation shows that our strategy can be useful for this specific realistic situation.
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Figure 13: The results of our data muling simulations. In (a) is the ground truth solar map used for the
simulations, overlaid with the explored paths in red and the converged paths in blue and green (blue is the
path from northwest to southeast, and green is the reverse return path). In (b) is the solar map estimated
by the planner at the end of the 10 iterations. In (c) is the chart of predicted and actual net cost and solar
current. Note that in step 5 a patch of sun is discovered that is sunnier than the 2σ bound in the map at
step 4 as seen in (c). Note also that the converged cost is greater than the cost in steps 1 and 5 because step
1 began with the robot facing in the direction it needed to go and step 5 began with a more favorable angle
than could be achieved later (going from the end of 4 to the beginning of 5 required only a quarter turn but
going from the end of 6 to the beginning of 5 would have required a half turn.)



6 Concluding Remarks and Future Work

In this work we presented a new data-driven method to construct a map of predicted solar power. We
demonstrated a system that used our method to plan energy minimizing paths, and we examined the con-
ditions that are necessary for our approach to be feasible. In the end, we achieved energy minimizing, time
limited path planning that was aware of important solar factors, and we did this without the addition of any
sensing hardware beyond the hall effect current sensor and the GPS system. We compared our approach
with the approach of using a robot without a panel, and characterized some of the situations where we
perform better and worse. Also, we specifically compared our approach with the näıve strategy which plans
the shortest path without any knowledge of the solar map and demonstrated the extent of our planning
benefit for specific example start and end positions and also a variety of randomly selected start and end
positions. The fundamental result is, intuitively: the more time that can be allowed to go from point A to
point B, the greater the benefit of using a solar panel and the greater the benefit of planning solar-aware
paths. ur characterization of the exact nature of this benefit in our system should be a useful starting point
for anyone building an outdoor mobile robot with solar energy harvesting capabilities.

A weakness of our approach is that we do not currently have a good method to account for the fact that
the solar map changes over time and instead we must construct entirely independent solar maps for different
time windows. In our future work we will investigate ways to intelligently take into account the movement
of the sun when planning energy minimizing paths.
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