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Abstract— We present a novel robotic telemetry system for
localizing radio-tagged invasive fish in frozen lakes using
coarse bearing measurements. We address the problem of
selecting sensing locations so as to minimize the uncertainty
in the location of the target. For this purpose, we propose
three active localization algorithms and evaluate them both in
simulations and through field experiments. We also present a
novel technique for bearing-estimation from directional radio
antenna which is critical for the successful execution of the
active localization algorithms. Our system is able to operate on
frozen lakes and localize the target to within values as low as
one meter.

I. I NTRODUCTION

Telemetry technology allows measuring information about
a target from a distance. It has a wide range of applications
ranging from defense to fisheries and wildlife research. For
example, researchers at the University of Minnesota tag
invasive fish with radio transmitters and track their movement
in lakes [1]. Similar systems exist for tracking various fish,
reptiles and birds [2]–[4].

In this paper, we present a tracking algorithm along with
field results for a novel robotic telemetry system. The domain
application for our system is tracking Common Carp in Min-
nesota’s lakes. Carp is a highly invasive fish which pollutes
lakes and destroys the natural habitat of the native animals.
In an effort to control carp, agencies and municipalities often
resort to non-selective toxins (in other words, poison) which
themselves are ecologically damaging. Recent research of the
Sorensen Lab at the University of Minnesota revealed that
carp strongly aggregate in winter. If these aggregations can
be detected, carp can be netted. This provides an ecologically
friendly solution to the carp problem.

Unfortunately, carp aggregations are unpredictable. As
a result, researchers spend a long time on frozen lakes
trying to localize fish manually. Our goal is to replace this
manual effort with robots. Toward this goal, we developed a
field robot capable of localizing tagged fish (see Figure 1).
The underlying telemetry technology used by the fisheries
researchers introduces a challenging active localizationprob-
lem: each tag emits a signal at a dedicated frequency once
every second. A directional antenna can be rotated to find
the bearing of the fish but as shown in Section III the
uncertainty in these measurements is rather large. We use
multiple measurements taken at various locations to estimate
the location of the target. The problem we address in this
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Fig. 1. The A100 Husky with tracking equipment (left top of chassis) and
antenna during field testing on Lake Casey, MN.

paper is how to choose sensing locations in an online fashion
so as to accurately localize a stationary fish with a small
number of measurements.

Our results and organization of the paper: In Section III,
we present an overview of our system and describe the
algorithms for bearing estimation. Next in Section IV, we
show how the robot can obtain a good initial estimate of
the target location. We then investigate three algorithms for
choosing the sensing locations. The first one is an open-loop
strategy based on the Cramer-Rao Lower Bound. The next
two are online algorithms which incorporate measurements
as they become available. We compare the algorithms in
simulations and through real experiments in Section V. The
experiments show that we can localize the target to within
approximately one meter. We start with an overview of
related work.

II. RELATED WORK

The literature on bearing-only localization and tracking
using a robot can be divided into two main areas: improving
the estimation performance by designing efficient estimators,
and optimizing the trajectory of the robots to obtain more
informative measurements. In this paper, we focus only on
optimizing the motion of the robot to improve the localiza-
tion performance.

In one of the earlier works on this problem, Hammel et
al. [5] used the determinant of the Fisher Information Matrix
(FIM) as the objective function, and numerically computed
the optimal trajectory for the robot in the case of continuous
measurements. Oshman and Davidson [6] later generalized
this problem by adding state constraints on the position of



the robot and used numerical optimal control techniques to
derive the robot trajectory. Bishop and Pathirana [7] derived
the optimal motion using FIM with additional final position
constraints. The resulting trajectory is computed numerically,
and follows a similar spiral pattern as that in [5].

Logothetis et al. [8] used the mutual information between
measurements and target trajectory to derive optimal robot
trajectory using enumeration and dynamic programming.
Computing the mutual information and FIM requires know-
ing the true location of the target. In practice, we have only
an initial estimate of the target. Additionally, all the above
described methods present open-loop trajectories for the
robot, which do not depend on the actual measurements we
obtain. Frew [9] presented a closed-loop strategy for tracking
targets using bearing information obtained from monocular
vision. The strategy is based on a state-exploration tree, and a
trajectory is obtained using breadth-first search for minimum
uncertainty. Skoglar et al. [10] pose a similar problem using
Information filters and find sub-optimal trajectories using
stochastic optimal control for minimizing the determinant
of the posterior Information.

One aspect that differentiates our work from the previous
work is that our measurements are time consuming. Hence,
we can only afford a few measurements. We build on
the previous work and evaluate three algorithms for our
application and report field results.

III. SYSTEM DESCRIPTION

The overall system is composed of a ground robot, with
the necessary radio equipment mounted on top of it (Fig-
ure 1).

A. Robot

Our system is built on a commercial platform: the Husky
A100 from Clearpath Robotics. It is a six-wheeled differen-
tial drive chassis with 150 mm tires. Two lead-acid batteries
provide approximately three hours of operation time, with a
top speed of 1.5 meters per second. High-level processing
such as tracking and navigation is handled by an ASUS
Eee PC mounted inside the electronics enclosure on Husky.
A Garmin 18x GPS unit is used for autonomous waypoint
navigation. We approximate the six-wheel differential drive
using a unicycle model. State (position and orientation)
estimates for the robot are obtained through an Extended
Kalman Filter (EKF) fusing GPS and odometer readings.
All software was written using ROS from Willow Garage to
interface the various components.

B. Radio Antenna

For sensing the fish, we use radio tags provided by
Advanced Telemetry Systems (ATS). A complete fish sensing
system by ATS consists of radio tags, a loop antenna con-
nected to a radio receiver and a datalogger which provides
computer interface for the receiver. Each radio tag emits a
pulse of unique frequency, roughly once per second.

The receiver can be programmed to tune on a particular
frequency and needs to stay tuned for a duration slightly

longer than that. While the signal strength of the received
signal depends on the distance of the tag from the antenna,
it is not directly useful as it depends on a number of
environmental factors such as depth of the fish, salinity and
temperature of the water and remaining battery on the tag.
Therefore, we rely only on the directional nature of the
antenna and obtain a bearing measurement towards the fish.
Our method for estimating the bearing is presented next.

C. Measurement model

The strength of the received signal varies with the relative
angle of the plane of the loop antenna with the tag. If the
tag is directly aligned with this plane, the signal strengthis
highest. Over360◦ of measurements, a noiseless signal is
a bimodal function, reaching a maxima at the true bearing,
and a second maxima offset by180◦. Minima are measured
perpendicular to the target bearing. We mount the antenna
on a pan-tilt unit, so that we can rotate it and sample signal
strength as a function of the relative angle from the boat.

Figure 2 shows a subset of the samples obtained by
rotating the antenna in steps of15◦ over [−90◦, 90◦]. The
true bearing angle is−30◦. As we can see, the values
around the true bearing are all high. This makes finding
a single bearing direction from the maximum signal value
difficult. Instead, we fit a function to the samples obtained,
and find the maximum value of this function. We tried both
a sinusoidal and a cubic function with least-squares and
RANSAC as fitting methods. Both functions agree with the
expected behavior of the signal strength as a function of
the angle. The data logger reports zero signal-strength if the
received strength is under a factory-set threshold. In cases
where only a few non-zero values are present in a 180◦

sweep, fitting a sine using either method or a cubic using
RANSAC method do not perform well. Based on a number
of trials, we concluded that least squares fitting of a cubic
polynomial works best for computing the bearing angle as it
gave the best performance. We found this reliably estimated
the bearing to the tag to within15◦.
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Fig. 2. A coarse sampling and the corresponding estimates. Thehorizontal
axis is the bearing and the vertical is the measured signal strength. In
general, least squares estimation of a cubic polynomial provided the best
estimates.

To update the estimate of the target, we augment the state
of the robot with the position of the tag. We assume the fish



remain stationary during the localization process, hence the
EKF propagation does not change the state of the fish. The
bearing measurements obtained using the method described
above are used to update the joint state of the robot and the
tag. The posterior covariance after EKF updates represents
the uncertainty in localization, and depends on the sensing
location. Since measuring the bearing takes time (around one
minute per measurement), estimation of the tag location must
be performed using a small number of measurements. In the
next section, we present a strategy to carefully choose these
sensing locations to minimize the uncertainty.

IV. A CTIVE LOCALIZATION

We present three strategies to computek sensing locations
and compare their performance in simulations and real-
experiments. These locations must be chosen in an online
fashion as the data becomes available since the location of
the fish is not known in advance. All three active localization
strategies we present require an initial estimate of the target.
Therefore, we address the problem of obtaining an initial
estimate first.

A. Initialization

We use two measurements from different sensing locations
to initialize the uncertainty of the robot. We draw cones
about each bearing obtained: width of the cone represents
the sampling interval and noise in measurements. We fit
an ellipse about the intersection of the two cones, and
initialize the covariance matrix of the target using sigma
values obtained from this ellipse.

Uncertainty in the target’s location, after the initialization
step depends on the relative position of the two sensing
locations and the true target location. The first measurement
is taken from the starting location(0, 0). Without loss of
generality assume that the first bearing measured is aligned
with the X-axis. Since the radio tags have a minimum and
maximum range (rmin&rmax), the target can lie anywhere
on theX-axis within this range, say at(r, 0). The uncertainty
measure for two bearing locations is given by the inverse
of determinant of the corresponding Fisher Information Ma-
trix [6] as:
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whered1 andd2 are the distances of the two measurement
location from the target, andθ is the relative angle between
them. Since true target location is unknown and can lie
anywhere between(rmin, 0) and (rmax, 0), the following
lemma shows how to choose the second sensing location
such that the uncertainty in the worst-case is minimized.

Lemma 1: If the second measurement is taken from
( rmax+rmin

2 ,± rmax−rmin

2 ), the worst-case uncertainty in the
target’s position after two measurements is minimized.

Proof: Assume the robot moves to(x, y) to take the
second measurement. If the target is located at(r, 0), our

resulting uncertainty is given by,
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Our objective here is to pick(x, y) to minimizeU over all
possible values ofr ∈ [rmin, rmax]. By differentiatingU

with respect to y, we find that for a givenr andx, the minima
occurs aty = ±(x − r). Intuitively, we see thatx must
be at rmin+rmax

2 . Otherwise, it is closer to eitherrmax or
rmin and by selectingr to be rmin and rmax respectively,
we can increaseU . We can formally prove this by letting
x = β rmax+rmin

2 and showing that for bothβ < 1 and
β > 1, the maximum value ofU we obtain is higher than
that for β = 1. Hence, the optimal choice for the second
measurement isx = rmax+rmin

2 andy = ± rmax−rmin

2 .
With this initial estimate obtained, we now use the follow-

ing three strategies to determine thek sensing locations for
the robot. The actual estimate of the target after obtaining
each measurement is computed using the EKF.

B. Cramer-Rao Lower Bound

The Cramer-Rao lower bound for an unbiased estimator
X̂ of state X is a lower bound on the estimation error
covariance matrixPk given as,

P = E[(X − X̂)T (X − X̂)] ≥ I−1,

whereI is the FIM for thek measurements. Fork bearing
measurements with zero-mean Gaussian noise,I can be
expressed as [6],

I =

k
∑

i=1

1

σ2d4i

[

∆y2i −∆xi∆yi
−∆xi∆yi ∆x2

i

]

where ∆xi = (xr(i) − xt), ∆yi = (yr(i) − yt), and
d2i = ∆x2

i + ∆y2i . Here, (xr(i), yr(i)) is the location of
the robot for theith measurement, and(xt, yt) is the true
target location.

The determinant of the FIM defined above is inversely
proportional to the square of the area of the 1-σ uncertainty
ellipse. Hence, the determinant ofI is commonly used as the
objective function to maximize. The determinant ofI can be
expressed as,

|I| = 1

σ4

k
∑

i=1

k
∑

j=1

[

sin(θi − θj)

didj

]2

. (2)

The objective is then to find thek sensing locations
(xr(i), yr(i)). Hammel et al. [5] solved the above problem
for the continuous measurements case (replacing the sum-
mations by integration). However, in our case since each
measurement requires sampling in multiple directions and
takes up to a minute, we cannot afford continuous measure-
ments. To compute thek discrete locations we impose a grid



about the current position of the robot with sizen× n. The
total number of candidate points for sensing locations are
n2. Hence, to compute thek sensing locations, we consider
each of the

(

n2

k

)

combinations as a candidate trajectory and
compute the FIM given by 2.

In general, computing the FIM requires knowing the true
target location. However, since we do not know this, we
use the estimate of the target location obtained after the
initialization step. In addition, this strategy computes all
sensing locations a priori. As a result, the performance of
this (open-loop) strategy depends on the initialization error,
as we observe in the simulation and experimental results in
Section V.

C. Greedy

Instead of computing a fixed path for thek measurements,
we can instead use a greedy strategy which picks the next
measurement location based on the current estimate and
uncertainty of the target. Given the current robot position
and target position, Greedy looks at all neighboring locations
of the robot. At every location, we simulate all candidate
measurements (e.g. by uniformly pickings samples between
0 to 360◦). Using the current estimate, we can compute
the posterior covariance by simulating an EKF update using
these candidate measurements. Thus, for every neighboring
location, we will haves posterior covariances. Greedy then
picks the candidate location where the maximum determinant
of theses posteriors is minimum. This ensures best worst-
case uncertainty for the target’s position in a greedy fashion.
Instead of the best worst-case uncertainty, we can choose
other heuristics (such as average-case) for the greedy.

We can extend the Greedy strategy to “look-ahead”k

measurements instead of just the immediate. This is explored
in the Enumeration tree strategy described next.

D. Enumeration tree

In this approach, we extend the objective function of
Greedy, to minimize the worst-case uncertainty obtained after
k measurements. We use a min-max tree to achieve this
objective. We can think of the min-max tree as a game
played by the robot with an adversary. At every location,
the adversary can choose a measurement which maximizes
the uncertainty (“bearing nodes”). The robot always chooses
an action which minimizes the uncertainty the adversary can
pick at the new location (“action nodes”). Hence, this strat-
egy ensures that after all the measurements, the worst-case
uncertainty in the position of the target is minimized. The
worst-case occurs when all the measurements are affected by
maximum noise. In general, measurements contain less than
maximum noise, and hence we do better than this worst-
case scenario. Any other strategy which involves fixing all
the sensing locations a priori cannot guarantee this.

Our strategy consists of two main steps: building the min-
max tree, and executing the strategy, which we describe next.

Building the min-max tree: The min-max tree consists
of two types of nodes: “bearing nodes” and “action nodes”.
Both type of nodes store the position of the robot and the

uncertainty of the fish. The initial uncertainty along with the
starting position of the robot is stored in the root node. We
then assign the neighbors of the robot’s current location as
the children of the root node, and denote these as “action
nodes”.

To find the direction with maximum strength we sample
every15◦ from 0−180◦ yielding 12 directions. Since we do
not know the true location of the fish, we cannot determine
which of these 12 corresponds to the actual measurement.
Each of these 12 directions is a candidate for the true
bearing measurement. Corresponding to each direction, we
assign “bearing nodes” to each action node. The bearing
nodes store the candidate bearing direction, in addition to
the state of the robot and the uncertainty of the fish. We
store the same position of the robot as that of its parent
action node. We merge the uncertainty of the parent with
the candidate bearing measurement using EKF updates, and
store the resulting uncertainty.

For each bearing node, we again assign action nodes
corresponding to each of the neighboring robot states on the
grid. The uncertainty at each action node is the same as its
parent bearing node. We can now recursively build the tree
up to a depth2k (so that there arek levels of bearing nodes).

Once the tree is built, the min-max value for each node
is propagated in a bottom-up fashion starting with the leaf.
The min-max value for the leaf nodes is defined as the
determinant of the posterior covariance matrix stored at that
node. If the min-max value for a nodei is denoted using
M(i) we have the following recurrence,

M(i) =











|Pi|i|, if i is a leaf node

maxj∈C(i) M(j), else if i is action node

mini∈C(i) M(j),else if i is bearing node

where C(i) are the children ofith node, andPi|i is the
determinant of the posterior covariance afteri measurements.

Executing the min-max tree:At the root node, we choose
an action node with minimum min-max value. We take a
new measurement after traveling to the location given by
this action node. We now re-define the root of the tree
to correspond to the bearing node corresponding to this
measurement. Since we use discrete measurement samples
while building the tree, we need to find that child node
which is closest to the obtained measurement. We use the
Bhattacharya Distance to find a child node, whose posterior
covariance is closest to the current covariance (after the
measurement update). The robot then repeats the above
steps till it reaches the leaf nodes (corresponding to thekth

measurement location).

V. EXPERIMENTS

To validate the proposed algorithms, we conducted both
simulations and experiments using the system described in
Section III.

A. Simulations

We first compared the three active localization strategies
in simulation. We ran 100 random trials for each: the same



randomization seed was used across strategies. In each case,
the robot started from the same initial position and the target
was placed at the same location. We generated noisy bearing
measurements by corrupting the true bearing with Gaussian
noise (zero-mean and varianceσz = 15◦). The rest of the
simulation parameters are listed in Table I.

The robot first executed the initialization step described
in Section IV-A. Since the seed for randomization was the
same, the resulting initial uncertainty was the same for
corresponding trials for each strategy (but different across
trials within the same strategy).

The results from the simulation are presented in Ta-
ble II, and the corresponding histograms of final error and
determinant of the final covariance matrix are shown in
Figures 3 and 4 respectively. The outliers with large errors
resulted from poor initial estimates. From the results we
observe that Enumeration tree has lower mean final error and
final uncertainty (determinant), where as the FIM strategy
performs the worst of the three. This result is not surprising
for two main reasons: (1) Since true target location is
unknown, we compute the FIM using its initial estimate.
Hence depending on how far the initial estimate is from the
true, the measurement locations generated could be worse.
(2) The FIM strategy computes locations which minimize
the lower bound on the final uncertainty of an “efficient
estimator” (i.e. estimator whose variance is equal to the
CRLB). Since the EKF is not an efficient filter, there is no
guarantee that it would achieve this lower bound. On the
other hand, the Enumeration tree and the Greedy actually
compute the covariance of this EKF estimator and pick the
location which would minimize its determinant.

Hence, we decided to compare only the Enumeration tree
and the Greedy strategy in actual experiments. The results
from these experiments are presented next.

TABLE I

SIMULATION PARAMETERS

No. of trials 100 σz 15
◦

No. of measurements 3 rmax 30m

Step size 3m Grid size 60m× 60m

TABLE II

SIMULATION RESULTS FOR100 TRIALS

Method
Mean final Mean final

error uncertainty

Enumeration tree 5.7275m 48.36

Greedy 5.9809m 40.59

FIM 6.2975m 54.81

B. Experiments on the robot

Experiments were conducted outdoors using the Husky
robot and tracking equipment shown in Figure 1. The ex-
perimental setup is shown in Figure 5(a). A reference tag
was kept at a location marked with a star, with its GPS
coordinates noted for ground truth. We conducted three trials
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Fig. 3. Histogram of final error in simulation for all three strategies, for 100
trials with 3 measurements each. The mean errors for FIM, Enumeration
tree and Greedy were6.30m, 5.73m and5.98m respectively
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Fig. 4. Histogram of determinant of the final covariance matrixin
simulation for all three strategies, for 100 trials with 3 measurements each.
The mean values for FIM, Enumeration tree and Greedy were48.36, 40.59
and54.81 respectively

each using the Enumeration tree and the Greedy strategy to
determine two measurement locations, in addition to those
determined by executing the initialization method described
in Section IV-A.

The results from one such trial with the Enumeration tree
and Greedy are shown in Figures 5(b) and 5(c), respectively.
The robot’s mean estimated positions are labeled by green
circles, while estimates of fish locations are shown as blue
crosses. The true location of the tag is marked with a red star.
The statistics from all experiments are presented in Table III.

Consider the trial shown in Figure 5(b). The first measure-
ment was taken at the origin(R1) by sampling the signal
strengths in all directions, as described in Section III-C.The
initial target bearing thus found was38◦ from the X-axis. Us-
ing the initialization strategy, a second measurement location
of R2 = (2, 10) was picked. The measured target bearing at
this location was−10◦. Using these two measurements, the
initial estimate for the position of the target was found to be
(12.22, 9.07) with uncertaintyσ2

x = 33.36, σ2
y = 12.15. The

1-σ bound from this measurement is shown as the largest



(a) Experimental setup.
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Fig. 5. Setup and experimental results for two strategies.R1 and R2 are the two locations used for initialization.R3 and R4 are the measurement
locations obtained using the corresponding strategy. The estimates atR2, R3 andR4 are shown along with the corresponding 1-σ ellipse bounds. The
true location of the tag is marked by a star.

blue ellipse.
The next two measurement locations(R3, R4) were calcu-

lated using the Enumeration Tree. From position(10, 10) the
robot measured the target bearing of7◦ and at(14, 13), this
was93◦. Since the radio antenna has bimodal characteristics,
a bearing of93◦ also corresponds to a bearing of−87◦. The
final estimate of the target from the EKF was(13.72, 10.73),
which was within2 meters of the true position. The final
covariance from the EKF is shown in Figure 5(b) with the
smallest blue ellipse.

TABLE III

EXPERIMENTAL RESULTS WITH DEPTH2

Method Final error Final uncertainty

Enumeration Tree
0.97 3.53
3.32 8.57
5.35 6.04

Greedy
3.21 20.52
3.29 11.93
8.65 11.34

Figure 5(c) shows a similar trial with measurement loca-
tions computed using the Greedy strategy. The final estimate
of the target for this trial was within 3.29 m of the true
location. The results from other trials are given in Table III.
The Enumeration tree strategy performs slightly better than
Greedy, both in terms of final error and final uncertainty.
However, the performance gains are a trade-off with respect
to the significant computation time and space required for
building the tree.

VI. CONCLUSION

We presented a novel system for localizing radio-tagged
carp in frozen lakes. We studied the problem of choosing
sensing locations in order to minimize the uncertainty in
the target’s location. We proposed three strategies, compared
them in simulations and reported results from field experi-
ments which show that our system is capable of localizing
the target within a meter of the true location.

Since the fish move very little for long periods of time
in winter, in our algorithms we assume that the target is
stationary. When this assumption is violated, algorithms

which address the mobility of the target must be designed.
We are working on a complementary system that uses robotic
boats as the underlying platform for tracking fish in the
summer. In addition to the mobility of the fish, the motion
of the boat during the measurement process makes the active
localization problem harder. Our agenda for future research
includes designing algorithms for this challenging problem.
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