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Abstract— We present a novel robotic telemetry system for
localizing radio-tagged invasive fish in frozen lakes using
coarse bearing measurements. We address the problem of
selecting sensing locations so as to minimize the uncertainty
in the location of the target. For this purpose, we propose
three active localization algorithms and evaluate them both in
simulations and through field experiments. We also present a
novel technique for bearing-estimation from directional radio
antenna which is critical for the successful execution of the
active localization algorithms. Our system is able to operate on
frozen lakes and localize the target to within values as low as
one meter.

I. INTRODUCTION

Telemetry technology allows measuring information about
a target from a distance. It has a wide range of applications
ranging from defense to fisheries and wildlife research. Fafig. 1. The A100 Husky with tracking equipment (left top of skis) and
example, researchers at the University of Minnesota taaptenna during field testing on Lake Casey, MN.
invasive fish with radio transmitters and track their movatne
in lakes [1]. Similar systems exist for tracking various fish ) ) _ ) ) )
reptiles and birds [2]-[4]. paper is how to choose sensing locations in an online fashion

In this paper, we present a tracking algorithm along wit§© @S to accurately localize a stationary fish with a small
field results for a novel robotic telemetry system. The domainumber of measurements. _
application for our system is tracking Common Carp in Min- Our results and organization of the paper: In Section lil,
nesota’s lakes. Carp is a highly invasive fish which pollute¥® Present an overview of our system and describe the
lakes and destroys the natural habitat of the native anima@gorithms for bearing estimation. Next in Section IV, we
In an effort to control carp, agencies and municipalitiegf Show how the robot can obtain a good initial estimate of
resort to non-selective toxins (in other words, poison)ahi the target location. We then investigate three algorithars f
themselves are ecologically damaging. Recent researtie of €100sing the sensing locations. The first one is an open-loop
Sorensen Lab at the University of Minnesota revealed th&t'ategy based on the Cramer-Rao Lower Bound. The next
carp strongly aggregate in winter. If these aggregatioms c4V0 are online algorithms which incorporate measurements
be detected, carp can be netted. This provides an ecolygicatS they become available. We compare the algorithms in
friendly solution to the carp problem. S|mulz_;\t|ons and through real expenments in Section V. _The

Unfortunately, carp aggregations are unpredictable. A%xperlments show that we can Iocallze_ the target tq within
a result, researchers spend a long time on frozen lakBBProximately one meter. We start with an overview of

trying to localize fish manually. Our goal is to replace thigelated work.
manual effort with robots. Toward this goal, we developed a 1
field robot capable of localizing tagged fish (see Figure 1). ) ) o ]
The underlying telemetry technology used by the fisheries 1€ literature on bearing-only localization and tracking
researchers introduces a challenging active localizatiob- USINg & robot can be divided into two main areas: improving
lem: each tag emits a signal at a dedicated frequency onf¥ estimation performance by designing efficient estinsato
every second. A directional antenna can be rotated to firff!d Optimizing the trajectory of the robots to obtain more
the bearing of the fish but as shown in Section Il thdnformative measurements. In this paper, we focus only on
uncertainty in these measurements is rather large. We uggtlmlzmg the motion of the robot to improve the localiza-
multiple measurements taken at various locations to etimd/on performance.

the location of the target. The problem we address in this !N One of the earlier works on this problem, Hammel et
al. [5] used the determinant of the Fisher Information Matri
This work is supported by NSF Awards #0916209, #091767636080, (FIM) as the objective function, and numerically computed
University of Minnesota. The authors are with the Departnuér@omputer . .
Science and Engineering, University of Minnesota, MinrdiapMN, USA. measurements. Oshman and Davidson [6] later generahzed
{t okekar, j vander,isl er}@s. um. edu this problem by adding state constraints on the position of
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the robot and used numerical optimal control techniques fonger than that. While the signal strength of the received
derive the robot trajectory. Bishop and Pathirana [7] de=tiv signal depends on the distance of the tag from the antenna,
the optimal motion using FIM with additional final position it is not directly useful as it depends on a number of
constraints. The resulting trajectory is computed nunadlyic  environmental factors such as depth of the fish, salinity and
and follows a similar spiral pattern as that in [5]. temperature of the water and remaining battery on the tag.
Logothetis et al. [8] used the mutual information betweeherefore, we rely only on the directional nature of the
measurements and target trajectory to derive optimal robahtenna and obtain a bearing measurement towards the fish.
trajectory using enumeration and dynamic programmingdur method for estimating the bearing is presented next.
Computing the mutual information and FIM requires know-
ing the true location of the target. In practice, we have onl
an initial estimate of the target. Additionally, all the ako The strength of the received signal varies with the relative
described methods present open-loop trajectories for tigagle of the plane of the loop antenna with the tag. If the
robot, which do not depend on the actual measurements &g is directly aligned with this plane, the signal strenigth
obtain. Frew [9] presented a closed-loop strategy for fragk highest. Over360° of measurements, a noiseless signal is
targets using bearing information obtained from monocula bimodal function, reaching a maxima at the true bearing,
vision. The strategy is based on a state-exploration trebaa and a second maxima offset bg0°. Minima are measured
trajectory is obtained using breadth-first search for minim perpendicular to the target bearing. We mount the antenna
uncertainty. Skoglar et al. [10] pose a similar problem gsinon a pan-tilt unit, so that we can rotate it and sample signal
Information filters and find sub-optimal trajectories usingtrength as a function of the relative angle from the boat.
stochastic optimal control for minimizing the determinant Figure 2 shows a subset of the samples obtained by
of the posterior Information. rotating the antenna in steps ®%° over [—90°,90°]. The
One aspect that differentiates our work from the previouue bearing angle is-30°. As we can see, the values
work is that our measurements are time consuming. Hencdound the true bearing are all high. This makes finding
we can only afford a few measurements. We build o@ single bearing direction from the maximum signal value
the previous work and evaluate three algorithms for oudifficult. Instead, we fit a function to the samples obtained,

. Measurement model

application and report field results. and find the maximum value of this function. We tried both
a sinusoidal and a cubic function with least-squares and
[1l. SYSTEM DESCRIPTION RANSAC as fitting methods. Both functions agree with the

The overall system is composed of a ground robot, witexpected behavior of the signal strength as a function of
the necessary radio equipment mounted on top of it (Fighe angle. The data logger reports zero signal-strengtteif t

ure 1). received strength is under a factory-set threshold. Inscase
where only a few non-zero values are present in a°180
A. Robot sweep, fitting a sine using either method or a cubic using

Our system is built on a commercial platform: the HuskyRANSAC method do not perform well. Based on a number
A100 from Clearpath Robotics. It is a six-wheeled differenof trials, we concluded that least squares fitting of a cubic
tial drive chassis with 150 mm tires. Two lead-acid batteriepolynomial works best for computing the bearing angle as it
provide approximately three hours of operation time, with gave the best performance. We found this reliably estimated
top speed of 1.5 meters per second. High-level processitfi}e bearing to the tag to withih5°.
such as tracking and navigation is handled by an ASUS
Eee PC mounted inside the electronics enclosure on Husky.
A Garmin 18x GPS unit is used for autonomous waypoint
navigation. We approximate the six-wheel differentiaivdri
using a unicycle model. State (position and orientation)
estimates for the robot are obtained through an Extended
Kalman Filter (EKF) fusing GPS and odometer readings.
All software was written using ROS from Willow Garage to
interface the various components.
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B. Radio Antenna

For sensing the fish, we use radio tags provided by
Advanced Telemetry Systems (ATS). A complete fish sensing
system by ATS consists of radio tags, a loop antenna CORig. 2. A coarse sampling and the corresponding estimateshdiizontal
nected to a radio receiver and a datalogger which providéé's is the bearing and the vertical is the measured signahgtn. In

. . . .. general, least squares estimation of a cubic polynomial geavihe best
computer interface for the receiver. Each radio tag emits &timates.
pulse of unique frequency, roughly once per second.

The receiver can be programmed to tune on a particular To update the estimate of the target, we augment the state

frequency and needs to stay tuned for a duration slightlgf the robot with the position of the tag. We assume the fish
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remain stationary during the localization process, hehee tresulting uncertainty is given by,
EKF propagation does not change the state of the fish. The

bearing measurements obtained using the method described . |7/ (z —7)2 + 32
above are used to update the joint state of the robot and the sin ~
tag. The posterior covariance after EKF updates represents V(E=r)try?
the uncertainty in localization, and depends on the sensing _ r((@—r)*+y?%)
location. Since measuring the bearing takes time (aroued on Y
minute per measurement), estimation of the tag locatiort mus

be performed using a small number of measurements. In the

next section, we present a strategy to carefully chooscethe@ur ijectlve here is to picks, y) to m|n|m|zeU_ov_er al
sensing locations to minimize the uncertainty. possible values of € [rymin, Tmaz]- By differentiating U

with respect to y, we find that for a giverandz, the minima
occurs aty = +(x — r). Intuitively, we see thatt must
be atw%. Otherwise, it is closer to either,,,, Or
rmin and by selecting: to ber,,;, andr,,.. respectively,

and compare their performance in simulations and reaf'® canTchrﬁasé]. We can formally prove this by letting
experiments. These locations must be chosen in an onlifie ™ 5% and showing that for 'bo_thB < 1 and
fashion as the data becomes available since the location %f> 1, the maximum value OU_ we obta_ln is higher than
the fish is not known in advance. All three active localizatio "t for 5 = 1. Henrce, frle.optlmal chm;:ea;(zrr the second
strategies we present require an initial estimate of thgetar Measurement ig = fuwfuin andy = £t ne. - W

Therefore, we address the problem of obtaining an initial With this initial estimate obtained, we now use the follow-
estimate f}rst ing three strategies to determine thesensing locations for

the robot. The actual estimate of the target after obtaining
each measurement is computed using the EKF.

ry/(z—71)%+y?
y b

IV. ACTIVE LOCALIZATION

We present three strategies to complugensing locations

A. Initialization

. . . B. Cramer-Rao Lower Bound
We use two measurements from different sensing locations

to initialize the uncertainty of the robot. We draw cones_ The Cramer-Rao lower bound for an unbiased estimator

about each bearing obtained: width of the cone represents Of state X is a lower bound on the estimation error
the sampling interval and noise in measurements. We fifvariance matrix’; given as,

gn_e!lipse about t_he interseption of the two cones, and P=E[(X - X)T(X-X)>I",
initialize the covariance matrix of the target using sigma
values obtained from this ellipse. where ! is the FIM for thek measurements. Fdr bearing

Uncertainty in the target’s location, after the initialipm measurements with zero-mean Gaussian nalsean be
step depends on the relative position of the two sensirgkpressed as [6],

locations and the true target location. The first measurémen & )
is taken from the starting locatio(0,0). Without loss of I=— Z 21 . { Ay; *Aﬂﬂzéﬁyi
generality assume that the first bearing measured is aligned = 0%, —AziAy; Az;

with the X -axis. Since the radio tags have a minimum and . .

. . where Az; = (z,(i) — z¢), Ay, = (y-(¢) — y:), and
maximum range 16, &rmq2), the target can lie anywhere @ — Az? + Ay?. Here, (z.(i),y.(i)) is the location of
on the X -axis within this range, say ét, 0). The uncertainty _* ! i AN

measure for two bearing locations is given by the inversthe robot for thei'" measurement, anfl;, y,) is the true
9 g y Eatrget location.

of determinant of the corresponding Fisher Information Ma- The determinant of the FIM defined above is inversely

trix [6] as: proportional to the square of the area of the iincertainty
(1) ellipse. Hence, the determinant bfs commonly used as the
objective function to maximize. The determinant/ofan be
net\xpressed as,

dyds
sin 0

9

whered; andd, are the distances of the two measureme

location _from the target, ané is_ the_relative angle between_ 1 Ik sin(f; — 6;) 2
them. Since true target location is unknown and can lie 1] = ;ZZ —aa 2
anywhere betweerr,,i,,0) and (rmq.,0), the following i=1j=1 o

lemma shows how to choose the second sensing locatighe objective is then to find theé: sensing locations
such that the uncertainty in the worst-case is minimized. (z,(i),y-(i)). Hammel et al. [5] solved the above problem
Lemma 1. If the second measurement is taken fronfor the continuous measurements case (replacing the sum-
(Tmastimin Imee—tmin) the worst-case uncertainty in themations by integration). However, in our case since each
target’s position after two measurements is minimized.  measurement requires sampling in multiple directions and
Proof: Assume the robot moves t@,y) to take the takes up to a minute, we cannot afford continuous measure-
second measurement. If the target is locatedraf), our ments. To compute the discrete locations we impose a grid




about the current position of the robot with size< n. The uncertainty of the fish. The initial uncertainty along wittet
total number of candidate points for sensing locations argarting position of the robot is stored in the root node. We
n?. Hence, to compute thee sensing locations, we considerthen assign the neighbors of the robot’s current location as
each of the(’;j) combinations as a candidate trajectory anghe children of the root node, and denote these as “action
compute the FIM given by 2. nodes”.

In general, computing the FIM requires knowing the true To find the direction with maximum strength we sample
target location. However, since we do not know this, wevery15° from 0—180° yielding 12 directions. Since we do
use the estimate of the target location obtained after th@t know the true location of the fish, we cannot determine
initialization step. In addition, this strategy computds awhich of these 12 corresponds to the actual measurement.
sensing locations a priori. As a result, the performance dach of these 12 directions is a candidate for the true
this (open-loop) strategy depends on the initializatiomorer bearing measurement. Corresponding to each direction, we
as we observe in the simulation and experimental results &ssign “bearing nodes” to each action node. The bearing

Section V. nodes store the candidate bearing direction, in addition to
the state of the robot and the uncertainty of the fish. We
C. Greedy store the same position of the robot as that of its parent

Instead of computing a fixed path for themeasurements, action node. We merge the uncertainty of the parent with
we can instead use a greedy strategy which picks the negke candidate bearing measurement using EKF updates, and
measurement location based on the current estimate astdre the resulting uncertainty.
uncertainty of the target. Given the current robot position For each bearing node, we again assign action nodes
and target position, Greedy looks at all neighboring larati  corresponding to each of the neighboring robot states on the
of the robot. At every location, we simulate all candidategrid. The uncertainty at each action node is the same as its
measurements (e.g. by uniformly pickingsamples between parent bearing node. We can now recursively build the tree
0 to 360°). Using the current estimate, we can computelp to a deptt2k (so that there arg levels of bearing nodes).
the posterior covariance by simulating an EKF update using Once the tree is built, the min-max value for each node
these candidate measurements. Thus, for every neighborisgpropagated in a bottom-up fashion starting with the leaf.
location, we will haves posterior covariances. Greedy thenThe min-max value for the leaf nodes is defined as the
picks the candidate location where the maximum determinadeterminant of the posterior covariance matrix stored ai th
of theses posteriors is minimum. This ensures best worsthode. If the min-max value for a nodeis denoted using
case uncertainty for the target’s position in a greedy fashi M (i) we have the following recurrence,

Instead of the best worst-case uncertainty, we can choose

other heuristics (such as average-case) for the greedy. ) [Pl ) I,f .Z,'S a !eaf node
We can extend the Greedy strategy to “look-ahead” M (i) = { maxjec() M(j), else ifi is action node
measurements instead of just the immediate. This is exgplore min; e M(j), else ifi is bearing node

in the Enumeration tree strategy described next. where C(i) are the children ofi®" node, andP,, is the

D. Enumeration tree determinant of the posterior covariance aftereasurements.
. I . Executing the min-max tree: At the root node, we choose
In this approach, we extend the objective function of ; . o .
D : : an action node with minimum min-max value. We take a
Greedy, to minimize the worst-case uncertainty obtainest af : . .
) . new measurement after traveling to the location given by
k measurements. We use a min-max tree to achieve tr}hs

o . : IS action node. We now re-define the root of the tree
objective. We can think of the min-max tree as a gam . ) .
: - to correspond to the bearing node corresponding to this

played by the robot with an adversary. At every location

. . . Mmeasurement. Since we use discrete measurement samples
the adversary can choose a measurement which maximizes. - . .
. " . N while building the tree, we need to find that child node

the uncertainty (“bearing nodes”). The robot always cheose , .~ .
which is closest to the obtained measurement. We use the

an action which minimizes the uncertainty the adversary Caéhattacharya Distance to find a child node, whose posterior

pick at the new location (“action nodes”). Hence, this strat : ) .
covariance is closest to the current covariance (after the
egy ensures that after all the measurements, the worst-case
measurement update). The robot then repeats the above

uncertainty in the position of the target is minimized. The o :

y P g teps till it reaches the leaf nodes (corresponding tokthe
worst-case occurs when all the measurements are affected .

. . . measurement location).

maximum noise. In general, measurements contain less than

maximum noise, and hence we do better than this worst- V. EXPERIMENTS
case scenario. Any other strategy which involves fixing all 14 validate the proposed algorithms, we conducted both

the sensing locations a priori cannot guarantee this.  simylations and experiments using the system described in
Our strategy consists of two main steps: building the mingection |11

max tree, and executing the strategy, which we describe next )

Building the min-max tree: The min-max tree consists A Smulations
of two types of nodes: “bearing nodes” and “action nodes”. We first compared the three active localization strategies
Both type of nodes store the position of the robot and thim simulation. We ran 100 random trials for each: the same



randomization seed was used across strategies. In each case Fim
the robot started from the same initial position and theetarg
was placed at the same location. We generated noisy bearing

measurements by corrupting the true bearing with Gaussian 0 10 20 30 0 50
noise (zero-mean and varianee = 15°). The rest of the =
simulation parameters are listed in Table I. 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
The robot first executed the initialization step described 10“ 1
in Section IV-A. Since the seed for randomization was the 0
same, the resulting initial uncertainty was the same for ° =
corresponding trials for each strategy (but different ssro 20 . Greedy 0
trials within the same strategy). i, I II |
The results from the simulation are presented in Ta- .

ble Il, and the corresponding histograms of final error and o s 10 15 20 25 3 B 40 45
determinant of the final covariance matrix are shown in

Figures 3 and 4 respectively. The outliers with large erronsg. 3. Histogram of final error in simulation for all threeatgies, for 100
resulted from poor initial estimates. From the results wéials with 3 measurements each. The mean errors for FIM, Endimera
observe that Enumeration tree has lower mean final error aigf 2"d Greedy were.30m, 5.73m and5.98m respectively

final uncertainty (determinant), where as the FIM strategy
performs the worst of the three. This result is not surpgisin 20
for two main reasons: (1) Since true target location is 1o0- ]
unknown, we compute the FIM using its initial estimate. Oh."h

Hence depending on how far the initial estimate is from the 0 50 100 150 200 250

Determinant of Covariance

true, the measurement locations generated could be worse. Tree

(2) The FIM strategy computes locations which minimize
10- .
om—.—t—-_t_—;

FIM

the lower bound on the final uncertainty of an “efficient

estimator” (i.e. estimator whose variance is equal to the - 50 100 150 200 750
CRLB). Since the EKF is not an efficient filter, there is no De‘e'm'”g‘r‘e‘g(fy°va”a“e
guarantee that it would achieve this lower bound. On the 2o \ \ \ \ \ \
other hand, the Enumeration tree and the Greedy actually m%h ]
compute the covariance of this EKF estimator and pick the 0

0 50 100 150 200 250 300 350

location which would minimize its determinant.
Hence, we decided to compare only the Enumeration tree
and the Greedy strategy in actual experiments. The resufig.- 4.  Histogram of determinant of the final covariance mairix

simulation for all three strategies, for 100 trials with 3 measents each.
from these eXpe”memS are presented next. The mean values for FIM, Enumeration tree and Greedy wWgr&6, 40.59

and 54.81 respectively

Determinant of Covariance

TABLE |
SIMULATION PARAMETERS

each using the Enumeration tree and the Greedy strategy to

No. of trials 100 o2 15°
No. of measurenents 3 Tmaz 30m determine two measurement locations, in addition to those
Step size 3m_|| Gid size | 60m x 60m determined by executing the initialization method desaib
in Section IV-A.
The results from one such trial with the Enumeration tree
TABLE 1l and Greedy are shown in Figures 5(b) and 5(c), respectively.

SIMULATION RESULTS FORL00TRIALS The robot’'s mean estimated positions are labeled by green

circles, while estimates of fish locations are shown as blue

B. Experiments on the robot

Experiments were conducted outdoors using the Huslof Ry =

Mean fi nal Mean fi nal . . .
Met hod error uncert ai nty crosses. The true location of the tag is marked with a red star
Enumeration tree 5.7275m 18.36 The statistics from all experiments are presented in Tdble |
G eedy 5.9809m 40.59 Consider the trial shown in Figure 5(b). The first measure-
FIM 6.2975m 5481 ment was taken at the origiiR,) by sampling the signal

strengths in all directions, as described in Section I1[F@e
initial target bearing thus found was® from the X-axis. Us-
ing the initialization strategy, a second measurementilmca
(2,10) was picked. The measured target bearing at

robot and tracking equipment shown in Figure 1. The exhis location was-10°. Using these two measurements, the
perimental setup is shown in Figure 5(a). A reference tagitial estimate for the position of the target was found & b
was kept at a location marked with a star, with its GP$12.22,9.07) with uncertaintyo? = 33.36,0;. = 12.15. The
coordinates noted for ground truth. We conducted threbstrial-o bound from this measurement is shown as the largest
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(a) Experimental setup. (b) Enumeration Tree Strategy (depth 2) (c) Greedy Strategy

Fig. 5. Setup and experimental results for two strategies.and Ry are the two locations used for initializatioi®s and R4 are the measurement
locations obtained using the corresponding strategy. Bhienates atRs, Rs and R4 are shown along with the correspondingrlellipse bounds. The
true location of the tag is marked by a star.

blue ellipse. which address the mobility of the target must be designed.
The next two measurement locatiaff®;, R4) were calcu- We are working on a complementary system that uses robotic
lated using the Enumeration Tree. From positiof, 10) the  boats as the underlying platform for tracking fish in the
robot measured the target bearing76fand at(14, 13), this summer. In addition to the mobility of the fish, the motion
was93°. Since the radio antenna has bimodal characteristiogf the boat during the measurement process makes the active
a bearing of03° also corresponds to a bearing-e87°. The localization problem harder. Our agenda for future redearc
final estimate of the target from the EKF w@s3.72,10.73),  includes designing algorithms for this challenging prafle
which was within2 meters of the true position. The final
covariance from the EKF is shown in Figure 5(b) with the VIl ACKNOWLEDGMENT
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