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Abstract— For battery-powered mobile robots to operate for
long periods of time, it is critical to optimize their motion so
as to minimize energy consumption. The driving motors are a
major source of power consumption. In this paper, we study the
problem of finding optimal velocity profiles for car-like rob ots
so as to minimize the energy consumed while traveling along a
given path.

We start with an established model for energy consumption
of DC motors. We present closed form solutions for the
unconstrained case and for the case where there is a bound
on maximum velocity. We also study a general problem where
the robot’s path is composed of segments (e.g. circular arcs
and line segments). We are given a velocity bound for each
segment. For this problem, we present a dynamic programming
solution which uses the solution for the single-constraintcase
as a subroutine. In addition, we present a calibration method
to find model parameters. Finally, we present results from
experiments conducted on a custom-built robot.

I. I NTRODUCTION

In this work, we study the problem of energy efficient nav-
igation. Specifically, we focus on car-like robots powered by
DC motors. It is well-known that the energy consumption of
a DC motor depends on the angular velocity and acceleration.
We study the problem of computing the velocity profile of a
robot so that it consumes a minimum amount of energy to
travel along a given path.

Even though energy efficient navigation is a fundamental
problem, it has received very little attention, and a com-
prehensive treatment is missing. Existing literature includes
the work of Sun and Reif [1] who consider the problem
of computing the optimal path over a terrain. Under the
assumption that the friction coefficients are known across
the terrain, they show how to compute a path that requires
minimum energy to overcome frictional forces. This work
generates the path but does not yield an optimal velocity
and acceleration profile. In this sense, it is complementary
to the present work.

In order to compute the velocity and acceleration profiles,
power consumption needs to be modeled. Mei et al. [2]
model the power consumption as a sixth-degree polynomial
of the robot’s speed using experimentally collected data.
However, their model does not incorporate acceleration.
More importantly, they use this model to compare velocity
profiles but do not address the problem of computing an
optimal profile.

Kim and Kim [3] find the optimal velocity profile for
a robot moving on a straight line, when the total time to
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travel is fixed. However, this solution does not incorporate
any bound on maximum velocity of the robot. In [4], they
propose a rotational trajectory planner that minimizes theen-
ergy consumption. They do not present a systematic method
to combine the solutions for translational and rotational
trajectories. Thus, it is not clear if this approach yields an
optimal solution. Wang et al. [5] studied the problem of
finding a minimum energy trapezoidal velocity profile. As
we will show shortly, trapezoidal profile itself is not optimal
in terms of total energy consumption. In addition, they too
do not consider any upper bound on the velocity of the robot.
Further, their technique is only applicable for turn-in-place-
move-forward type of motion for differential drives, and is
not experimentally verified.

The rest of the paper is organized as follows: After
presenting the formal problem statement and the energy
model in Section II, we present a calibration procedure for
estimating the parameters of the energy model in Section III.
The optimal velocity profiles with and without a maximum
velocity bound are derived in Sections IV and V respectively.
The application of these results to compute the velocity
profile over an entire path composed of multiple segments is
presented in Section VI. Experiments on our custom-robot
are presented in Section VII. We conclude with a discussion
on the utility of our results in Section VIII.

II. PROBLEM FORMULATION

We are given a pathΠ along which the robot moves. LetD
be its total length. Since the motion of the robot is restricted
to Π, we can represent the instantaneous position by a single
parameter,x(t). The forward velocity and acceleration of the
robot are represented byv(t) anda(t) respectively. We define
the state of the robot byX(t) = [x(t), v(t)]

T . The state
transition equation can be written asẊ(t) = [v(t), a(t)]

T .
The problem we address in this paper is to compute the

velocity profile,v(t) of the robot alongΠ which minimizes
the energy consumption for motion. We start with the energy
consumption model in the next section.

A. Energy Model

We use the model described in [6] for energy consumption
in a brushed DC motor. This detailed model considers the en-
ergy dissipated in the resistive winding, the energy required
to overcome internal and load friction and the mechanical
power delivered to the output shaft. The instantaneous cur-
rent i(t) in the motors is given by,

i(t) =
1

KT

[

TF + TL +Dfω(t) + (JM + JL)
dω(t)

dt

]

(1)



and the voltagee(t) across the motor is given by,

e(t) = i(t)R+KEω(t) (2)

whereω(t) is the angular velocity of the motor,KE andKT

are back-EMF and torque constants,TF andTL are internal
and load frictional torques,Df is the internal damping force
andJM andJL are motor and load moments of inertia.

Since linear velocity of the robot and angular velocity
of the motor for a car-like robot are proportional to each
other, we can rewrite Equations 1 and 2 to yield the energy
consumption can be written as,

E =

∫

0

tf [

e(t)i(t)
]

dt.

=

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t)

+ c4 + c5a(t) + c6v(t)a(t)
]

dt.

where constantsc1, . . . , c6 are combinations of the motor
parameters, andv(t) and a(t) are the linear velocity and
acceleration of the robot obtained fromω(t) and the radius
of the wheel. When the initial and final velocity values are the
same forΠ, the net contribution by the terms corresponding
to c5 andc6 is zero. Hence, we can rewrite the energy model
as,

E =

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4

]

dt. (3)

The constantsc1, . . . , c4 depend on the motor parameters
which in turn depend on the robot design and the surface on
which the robot is moving. These parameters can be obtained
using the calibration procedure presented in Section III.

B. Problem Statement

Recall thatΠ is a path of lengthD. The energy con-
sumption for a velocity profilev(t) traversingΠ is given by
Equation 3. The final timetf can be fixed or kept free. We
study three problems of increasing generality. For each of
the problems, the objective is to minimizeE subject to the
constraints given below:

Problem 1: There is no bound on the maximum velocity of
the robot. The robot starts from and returns to rest i.e., the
initial and final boundary conditions are given asx(0) = 0,
v(0) = 0, andx(tf ) = D, v(tf ) = 0.

Problem 2: The maximum velocity of the robot overΠ is
bounded byvm, i.e., v(t) ≤ vm for 0 ≤ t ≤ tf . The initial
and final velocities of the robot can be non-zero, i.e.,v(0) =
v0 andv(tf ) = vf subject tov0, vf ≤ vm.

Problem 3: Π consists ofN segments made up of straight
lines and curves. There is a separate velocity bound for each
segment. For each segmenti, we are given the velocity bound
vm(i) and the distance to travelD(i), 1 ≤ i ≤ N . The
objective is to find the optimal velocity profile over the entire
pathΠ. The robot starts from rest and returns to rest at the
end of the path.

The solutions forProblems 1, 2and 3 are presented in
Sections IV, V and VI respectively. We begin by describing
the calibration procedure to determine the model parameters.

III. C ALIBRATION

In this section, we describe a simple procedure to find
the energy model (Equation 3) of the robot for a given
flat surface. We use a custom-built robot (see Figure 1) for
experiments. The robot is driven using two DC motors whose
output shafts are connected together. It has car-like steering
controlled by an independent servo motor. Separate batteries
are used to drive the DC motors and power the rest of the
electronics on the robot.

Fig. 1. Left: Custom-built robot used in our experiments.Right: Attopilot
voltage and current measurement circuit from SparkFun Electronics.

A. Experimental Setup

Our method utilizes a simple current and voltage measure-
ment circuit (Figure 1) connected between the output of the
motor driver circuit and the motor. This circuit measures the
current flowing through and the voltage across the motor.
The linear velocity of the robot is measured using an optical
encoder installed on one of its wheels. In the calibration
procedure described next, the steering of the robot is set so
that the robot moves in a straight line.

B. Calibration Procedure

We can write Equations 1 and 2 as,

i(t) = b1+b2v(t)+b3a(t), e(t) = b4+b5v(t)+b6a(t) (4)

where b1, . . . , b6 are linear combinations of the internal
parameters of the motors. The calibration procedure to obtain
the energy parameters consists of the following steps:

STEP 1: Move the robot at a constant velocity (vset)
for some time interval. Log the current and voltage across
the motor. Repeat for differentvset values ranging from the
minimum to the maximum achievable velocity for the robot.
Figure 2(a) shows some of the actual profiles obtained during
calibration forvset from 0.5m/s to 2.5m/s.

STEP 2: Compute the average current and voltage for
each of the above trials disregarding the initial acceleration
phase. Using Equation 4, we can find the parametersb1, b2,
b4 and b5 using least-squares linear fitting to the data (see
Figure 2(b and c)).

STEP 3: To find the remaining two termsb3 andb6 in the
model, we program the robot to move from rest at various
set acceleration valuesaset for some interval of time (see
Figure 2(d)).



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Time in secs

V
el

oc
ity

 in
 m

/s

Calibration

0 0.5 1 1.5 2 2.5
5

5.5

6

6.5

7

C
ur

re
nt

 in
 a

m
ps

Velocity in m/s

Current vs. Velocity

0 0.5 1 1.5 2 2.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
ol

ta
ge

 in
 v

ol
ts

Velocity in m/s

Voltage vs. Velocity

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time in secs

V
el

oc
ity

 in
 m

/s

Calibration

Fig. 2. Figures obtained during calibration on the corridorsurface. Left to right:(a) The robot initially accelerates from rest to various set velocity values.
The average current and voltage is computed for the region where the robot has reachedvset (STEP 1).(b) Current consumption as a linear function of
the velocity, when the motor is not accelerating (STEP 2).(c) Voltage applied to the motor as a linear function of the velocity, when the motor is not
accelerating (STEP 2).(d) Calibration procedure to determine the parameterc1 in the energy model. The robot is accelerated with various set acceleration
valuesaset while logging current and voltage values (STEPS 3 and 4).

STEP 4: Compute the values ofb3 andb6 by substituting
aset andb1, b2, b4 andb5 values obtained above in Equation 4
and taking the average of all the readings.

STEP 5: Finally, the required parametersc1, . . . , c4 in the
model used throughout the paper (Equation 3) can then be
calculated asc1 = b3b6, c2 = b2b5, c3 = b1b5 + b2b4, and
c4 = b1b4.

Using the above procedure, we calibrated our robot on
a building corridor surface. The parameters obtained after
calibration were:c1 = 17.75, c2 = 1.16, c3 = 10.46
and c4 = 4.70 SI units. The rest of the paper uses these
parameters for illustrations.

IV. OPTIMAL UNCONSTRAINED VELOCITY PROFILE

In this section, we present the solution toProblem 1. We
first state the necessary conditions and present the closed
form solution for the optimal velocity profile. Then, we
discuss and provide insights for the structure of the optimal
profile. Finally, we compare the optimal profile with the
commonly-used trapezoidal velocity profile. Due to space
constraints, we omit some proofs in this conference version,
and direct the readers to the technical report [7].

A. Solution toProblem 1

When there is no bound on the maximum velocity, the
Hamiltonian [8] for this problem can be obtained as,

H(X(t), a(t),λ(t), t) = c1a
2(t) + c2v

2(t) + c3v(t)

+c4 + λ1(t)v(t) + λ2(t)a(t) (5)

where λ1(t) and λ2(t) are the Lagrange multipliers and
accelerationa(t) is the control.

The three necessary conditions fora∗(t) to optimize the
Hamiltonian for all timet ∈ [0, tf ] are given as,

Ẋ
∗(t) =

∂H

∂λ
, λ̇

∗
(t) = −

∂H

∂X
, 0 =

∂H

∂a
(6)

Applying these necessary conditions, we can solve the
resulting partial differential equations for the optimal control

and states to get,

a∗(t) = ks1e
kt − ks2e

−kt (7)

v∗(t) = s1e
kt + s2e

−kt −

(

c3 + s3
2c1

)

(8)

x∗(t) =
s1e

kt

k
−

s2e
−kt

k
−

(

c3 + s3
2c1

)

t+ s4. (9)

wherek =
√

c2
c1

ands1, . . . , s4 are constants.

We can solve fors1, . . . , s4 in terms of the final timetf
by substituting the boundary conditions given inProblem 1
for v∗(t) andx∗(t). We obtain,

s1 = −
Dk

ktf + ektf (ktf − 2) + 2
, s2 = s1e

ktf ,

s3 = 2c1(s1 + s2)− c3, s4 = −
s1 − s2

k
. (10)

By substituting in Equation 8 we obtain the optimal
velocity profilev∗(t) in terms oftf as,

v∗(t) = D

√

c2
c1

(

(1 + ektf − (ek(tf−t) + ekt))

ktf + ektf (ktf − 2) + 2

)

. (11)

Since the final time is free, it can be solved for using the
additional boundary condition (known as the transversality
condition) given by,

H(X∗(tf ), a
∗(tf ),λ

∗(tf ), tf ) = 0. (12)

Substituting Equations 7-9 and 10 above results in,

(D
c2
c1

+ 2)(1− ektf ) +

√

c4
c1
ktf (1 + ektf ) = 0, (13)

which is an equation in single variabletf (all other terms
are constant) and can be solved using any solvers. (We
used MATLAB’ssolve function). Alternatively, if the final
time is fixed, we can directly substitute this given value in
Equation 11 to findv∗(t).

Figure 3 shows the optimal velocity and the corresponding
optimal control profile obtained for traveling distances of
5, 35, 70 and 100m using Equation 11. It is worth noting
that the optimal profile reaches the same peak velocity and
does not go faster even if the distance to travel increases.
This peak velocity value represents the energy trade-off
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Fig. 3. Left: The optimal velocity profiles for distancesD =
5, 35, 70, 100m have a similar structure reaching the same peak velocity
at t = tf /2. Right: Comparison between optimal trapezoidal profile and
general optimal profile. The general optimal profiles gains larger savings
during accelerations and decelerations.

between moving faster (and consequently for a lesser time)
and moving slower (and for longer times).

Figure 3 shows the general optimal profile and opti-
mal trapezoidal profile computed for traveling a distance
of D = 50m. The general optimal profile we compute
gains higher savings with respect to the trapezoidal pro-
file while accelerating and decelerating. For example, the
optimal profile yields1.94% savings when traveling1m,
while the savings drop to0.32% whenD = 100m for the
parameters calculated on our custom robot. These figures are
highly system-specific. In situations where the robot has to
frequently stop, following an optimal profile would result
in more energy savings and a longer lifetime. The velocity
profile computed in this work is guaranteed to minimize the
energy consumption for the stated assumptions.

V. GENERAL SOLUTION INCORPORATING MAXIMUM

VELOCITY BOUND

The optimal profile given in Section IV does not satisfy
any bound on the maximum velocity imposed by the physical
limitations of the robot. In this section, we solve for the
optimal velocity profile with a bound on the maximum
achievable velocityv(t) ≤ vm. Additionally, the initial
and the final velocities of the robot can be non-zero i.e.,
v(0) = v0 andv(tf ) = vf subject tov0, vf ≤ vm.

In the energy model, we assumed that the initial and
final velocity are the same. Hence, the resulting profile from
Problem 2 when initial and final velocities are different
would not be energy-optimal. However, such a case is only
used as a subroutine for solving part ofProblem 3. In
Problem 3, the first and the last segments have zero initial and
final velocities respectively, and hence the resulting solution
obtained by usingProblem 2as a subroutine remains optimal.
We now derive the analytical solution forProblem 2by first
discussing the possible structures of an optimal profile.

A. Structure of optimal profile

Depending on the value ofvm andD, the optimal velocity
profile can belong to one of the following two cases:
CASE 1: Unconstrained solution does not violatev(t) ≤ vm

In this case, the optimal velocity profile computed in
Section IV is a valid solution for the constrained case. This
can happen whenvm is larger than the peak velocity reached

by the unconstrained solution i.e.,vm ≥
√

c4
c2

. The details

are presented in [7]. Additionally, when the distance to travel
D is so small that the velocity profile does not change much
(see Figure 3 whenD = 5m), unconstrained solution would
be feasible and hence, optimal.

The analytical solution presented for the unconstrained
form was derived for zero initial and final velocities. By
following a similar process, we can extend this to non-zero
initial and final values to get,

s1 =
(v0 − vf )(1 − e−ktf − ktf ) +Dk(1− e−ktf )

ektf (2 − ktf) + e−ktf (2 + ktf )− 4
,

s2 =
(v0 − vf )(1 − ektf + ktf )−Dk(1− ektf )

ektf (2 − ktf ) + e−ktf (2 + ktf )− 4
,

s3 = 2c1(s1 + s2)− c3 − v0, s4 = −
s1 − s2

k
. (14)

CASE 2: Unconstrained solution violatesv(t) ≤ vm
In this case, the solution consists of unconstrainedU

(v(t) < vm) and constrained arcsC (v(t) = vm) joined
together atcorner points. The optimal solution must be a
U−C−U sequence havingcorner pointsat timest = t1 and
t = tf − t2, along with its degenerate cases(U−C, C−U , C)
when either or both oft1 and t2 equal to 0. This can be
shown easily by proving that all other sequences consume
more energy than aU − C − U sequence. The full proof is
presented in [7].

We now show how to obtain the solution for this case
in closed form. Specifically, we show how to obtainv∗(t)
for the unconstrained and constrained arcs and compute the
corner pointst1 and tf − t2.

B. Solution

We begin by writing the velocity constraint in the form of
state inequalityS̄ = (v(t) − vm) ≤ 0. The state inequality
S̄ is converted into a control equalitȳS(1) and interior
point constraintG by differentiating S̄ once, leading to
S̄(1) = v̇(t) = u andG = ξ(v(t) − vm). The Hamiltonian
is augmented with the control equality constraint between
[t1, tf − t2] and is given byĤ = H + µ(t)a(t), whereµ(t)
is the slack variable associated with the control constraint
andH is given by Equation 5.

The three necessary conditions given in Equation 6 are
used to obtain the optimal profile in the time interval[0, t1]
and[tf−t2, tf ]. On the constraint boundary, i.e.t ∈ [t1, tf−
t2], the following necessary conditions must hold,

Ẋ
∗(t) =

∂Ĥ

∂λ
λ̇
∗
(t) =

∂Ĥ

∂X
0 =

∂Ĥ

∂a
(15)

Additionally, on the two corners (t = t1, t = tf − t2), the
following conditions must hold for the optimal solution [9],

H(t+1 ) = H(t−1 ) +

[

∂G

∂t

]

t1

,λ(t+1 ) = λ(t−1 )−

[

∂G

∂X

]T

t1

H((tf − t2)
+) = H((tf − t2)

−)

λ((tf − t2)
+) = λ((tf − t2)

−) (16)



Using these conditions, we can solve for the optimal
control and velocity profiles in terms of the constants for
the off-boundary exponential curves and timest1, t2 andtf .
The optimal velocity profile is given by,

v∗(t) =































s1
(

ekt + ek(2t1−t) − (1 + e2kt1)
)

+ v0,

0 ≤ t ≤ t1

vm, t1 ≤ t ≤ tf − t2

s2
(

e−k(tf−t−2t2) + ek(tf−t) − (1 + e2kt2)
)

+ vf ,

tf − t2 ≤ t ≤ tf .
(17)

We can obtain the values of these constants and times
using the initial and final conditions, the transversality con-
dition given in Equation 12, and the interior point constraint
v∗(t) = vm in t1 ≤ t ≤ tf − t2 to give,

s1 = −
(vm − v0)

(ekt1 − 1)2
, s2 = −

(vm − vf )

(ekt2 − 1)2
,

t1 =
1

k
ln
(c4 + c2v

2
m − 2c2v0vm

c4 − c2v2m

+
2(c2vm(c4 − c2v0vm)(vm − v0))

1

2

c4 − c2v2m

)

,

t2 =
1

k
ln
(c4 + c2v

2
m − c2vfvm

c4 − c2v2m

+
2(c2vm(c4 − c2vfvm)(vm − vf ))

1

2

c4 − c2v2m

)

.

(18)

The final time can then be calculated by using the total
distance to travel and the distances traveled in the two
exponential curves.

tf = t1 + t2 +
x∗(tf − t2)− x∗(t1)

vm
.

It is easy to see that ifv0 or vf is equal tovm, thent1 = 0
or t2 = 0 respectively.
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Fig. 4. Left: Optimal Velocity profile obtained for maximum velocity
boundvm = 1m/s. Right: Optimal velocity profile withv0 = 0.8m/s,
vm = 1m/s andvf = 0.1m/s for traveling 25m.

Figure 4 (left) shows the optimal velocity profile obtained
for traveling a distance of25m with the maximum velocity
bound set tovm = 1m/s and v0, vf = 0, along with
the corresponding solution when there is no constraint on
the maximum velocity. Figure 4 (right) shows the optimal
velocity profile obtained for the traveling a distance of25m,
with velocity bound vm = 1m/s and initial and final
velocitiesv0 = 0.8m/s andvf = 0.2m/s respectively.

VI. OPTIMAL PROFILE OVERMULTIPLE SEGMENTS

We now use the general solution given above to solve for
the problem of finding an optimal velocity profile over a
path consisting ofN segments (see Figure 5). Depending on
the surface on which a car-like robot operates, the maximum
feasible speed without either slipping or overturning for each
segment will depend on the radius of the segment. Hence, for
each segment, we fix a maximum allowable velocityvm(i)
and are given a distanceD(i), 1 ≤ i ≤ N to travel.

The robot initially starts at and returns to rest, i.e.,v0(1) =
0 andvf (N) = 0. The velocitiesv0(i) andvf (i) can be non-
zero for all other intermediate segments. We can compute the
optimal velocity profile for a given segment, if we know the
v0(i) andvf (i) that the optimal velocity profile uses.
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Fig. 5. Left: Typical path for a robot composed of two straight line
segments and two turns of different radii. Segments have different maximum
allowable velocities, depending on their radii.Right: Optimal velocity
profile with different bounds for different segments. The given path consists
of 4 segments with boundsvm = {0.8, 0.2, 0.8, 0.4}m/s and distances
D = {6, 0.5, 6, 1}m

Let Vmax be the maximum of{vm(i), ∀i} over all seg-
ments. We then discretize the velocity space at the segment
boundary intoM equal partitionsv(k) = k

M
Vmax, 0 ≤ k ≤

M . Let C(v(k), i) be the cost to reach the velocityv(k) at
the ith segment boundary. LetE(v0, vm, vf ) be a function
which gives the energy consumption for an optimal velocity
profile in a segment starting withv0 and ending withvf . If
either v0 > vm or vf > vm then the function returns the
cost asE(v0, vm, vf ) = ∞. We can then use the following
recurrence for theith segment boundary and1 ≤ k ≤ M :

C(v(k), i) = min
0≤j≤M

(

C(v(j), i− 1) + E(v(j), vm(i), v(k))
)

Since the robot initially starts from rest, we have:

C(v(k), 0) =

{

0 k = 0,

∞ 1 ≤ k ≤ M.

The solution can be obtained by backtracking from
C(v(0), N) and finding optimal segment boundary velocity
values. The optimal velocity profile can then be constructed
using these optimal boundary velocity values to find individ-
ual segment profiles.

Figure 5 (right) shows the optimal velocity profile obtained
using above dynamic programming for a path consisting of
4 segments. The velocity bounds for these segments are
vm = {0.8, 0.2, 0.8, 0.4}m/s. This solution is optimal up
to numerical precision along the segment boundaries only
and exact everywhere else.



VII. E XPERIMENTS

To test the validity of our results, we performed ex-
periments using our custom robot. The experiments were
performed on the smooth corridor surface for which the robot
was calibrated. We first computed the analytical solution for
the velocity profile to travel the given distance. This profile
was then sampled at10Hz and values were stored in a
lookup table.
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Fig. 6. Optimal velocity profile executed by the robot for multiple
segments. The dashed curve shows the optimal profile computed using the
dynamic programming solution for segments withD = 10, 3, 10m and
maximum velocity constraintsvm = 1, 0.2, 1m/s.

Figure 6 shows the optimal profile computed using the
dynamic programming solution presented in Section VI, for
three segments with distancesD = 10m, 3m and10m and
maximum velocity constraints asvm = 1m/s, 0.2m/s and
1m/s. The computed velocity profile is shown as a dashed
curve. The total energy consumed over the entire profile
was 595J . As can be seen, the actual profile executed has
small deviations arising due to noise and disturbances on the
surface. In this work, we pre-compute the optimal trajectory
for the robot. A useful extension to this could be to design
an optimal velocity feedback controller which minimizes the
energy consumption.

We compare the energy consumption of our optimal profile
with two commonly-used trapezoidal profiles. The maximum
speeds for these profiles are chosen as1m/s and 2m/s,
so that the robot covers the same distance taking more and
less time than the optimal respectively. We perform these
comparisons forD = 20m andD = 45m.
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Fig. 7. Left: Optimal velocity profile executed by the robot for traveling
20m in 18.4s while consuming296J energy. The optimal profile is shown
as dashed.Right: Sub-optimal velocity profiles executed by the robot for
traveling20m at maximum set velocities of1m/s and2m/s. The energy
consumption for these profiles is303J and319J .

Figure 7 shows the optimal, slower and faster velocity
profiles executed by the robot in the corridor. The optimal
profile computed is also shown in Figure 7 as dashed. Table I
shows the comparison of the energy consumption for all
the trials conducted. As we can observe, the optimal profile
consumes lesser energy than the two sub-optimal profiles.
Also, the energy savings become more significant as the
distance traveled increases.

TABLE I

ENERGY CONSUMPTION DURING EXPERIMENTS

D (m) Eopt(J) Eslow(J) Efast(J)

20 296 303 319
45 656 694 696

VIII. C ONCLUSION

In this work, we studied the problem of computing a
velocity profile for a car-like robot so as to minimize the
energy consumed while traveling along a given path on a
flat surface. We presented closed form solutions for two
cases: no constraints on the robot’s speed, and a single upper-
bound on the speed. We also studied a general case where
the robot’s path is composed of segments and we are given
a speed upper-bound for each segment. For example, the
robot’s path can be composed of circular and straight-line
segments. When the robot is following the circular sub-path,
the maximum speed it can achieve can be less than the
maximum speed for the straight component. These bounds
may vary depending on the surface properties. For this
general case, we presented a dynamic programming solution
which builds on the solution for the single-bound case.

In addition, we presented a calibration procedure for
obtaining robot’s internal parameters related to energy con-
sumption. We demonstrated the utility of the calibration
procedure and the algorithms presented in the paper with
experiments performed on a custom-built robot.
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