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Abstract—Carp is a highly invasive, bottom-feeding fish which
pollutes and dominates lakes by releasing harmful nutrients.
Recently, biologists started studying carp behavior by tagging the
fish with radio-emitters. The biologists search for and localize
the radio-tagged fish manually using a GPS and a directional
antenna. We are developing a novel robotic sensor system in
which the human effort is replaced by autonomous robots capable
of finding and tracking tagged carp.

In this paper, we report the current state of our system. We
present a new coverage algorithm for finding tagged fish and
active localization algorithms for localizing them precisely. In
addition to theoretical analysis and simulation results, we report
results from field experiments.

I. INTRODUCTION

Invasive fish, such as the common carp, pose a major threat

to the ecological integrity of freshwater ecosystems around

the world. Presently, these fish are controlled using non-

specific toxins which are expensive, ecologically damaging,

and impractical in large rivers and lakes. Recent studies in

small lakes have established that common carp aggregate

densely at certain times and regions within the lakes [1]. Their

population can be controlled by targeting these aggregations

using netting. To predict the locations of aggregations within

a lake, biologists surgically implant radio tags on some fish,

and use radio antennas to track them periodically (Figure 1).

Manually locating tagged fish in large, turbid bodies of water

is difficult and labor-intensive. Our goal is to build a robotic

system to automate this tedious manual task.

In our previous work [2], we demonstrated the feasibility

of finding radio-tagged carp using a custom-made, catamaran-

style autonomous robot. Our current system features a new

boat (Figure 1) and improved system architecture, presented

in Section III.

We perform the task of locating tagged fish in two phases:

search and localization. The goal in the search phase is to

find a location of the robot from which the tag can be sensed.

In the localization phase, the goal is to accurately estimate

the location of the fish. We developed a new search algorithm

suitable for finding tagged carp under the assumption that they

loiter in their home ranges for long periods of time [3]. In

Section IV we present this algorithm, its analysis, and results

from a field trial.

In Section V, we first present a method to robustly obtain a

bearing measurement towards a tag using a directional radio

antenna. We then propose three strategies to compute locations

from which to obtain bearing measurements from, so as to

localize stationary tagged fish precisely. These strategies were
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previously presented in [4] with experiments performed for a

ground robot. We report additional experiments using our boat.

Finally in Section VI, we report results from field experiments

where the robot executed both search and localization phases

for locating reference tags and radio-tagged fish.

II. RELATED WORK

Recent years have witnessed the development of many

environmental monitoring systems which use aquatic robots.

Applications include tracking dynamic phytoplankton [5] and

collecting biological and environmental data from stationary

sensors [6], [7]. The recent survey by Dunbabin and Mar-

ques [8] provides an excellent overview of such systems.

The search problem is closely related to the robotic coverage

problem which has received significant attention (c.f. [9]). We

introduce a new version of the problem in which regions

scattered in the lake must be covered, as opposed to the

whole lake. We present a constant-factor polynomial-time

approximation algorithm for this problem (see e.g. [10] for

more on approximation algorithms).

In the localization phase, we perform active, bearing-only

target localization. In one of the earlier works on this problem,

Hammel et al. [11] used the determinant of the Fisher Informa-

tion Matrix (FIM) as the objective function to be maximized,

and numerically computed an optimal open-loop trajectory

for a robot in the case where measurements are obtained

continuously. The resulting trajectory follows a spiral shape,

but is an open-loop trajectory which does not depend on the

actual measurements the robot obtains. Frew [12] presented a

feedback strategy for tracking targets with bearing measure-

ments obtained using monocular vision. The strategy is based

on a state-exploration tree, and a trajectory is obtained using

breadth-first search for the minimum uncertainty. Recently,

Zhou and Roumeliotis [13] considered the active localization

problem for a team of robots capable of taking range and/or

bearing measurements towards a moving target. They consider

maximum speed and minimum sensing range constraints, and

plan for the next best sensing location using the trace of the

posterior covariance matrix as the uncertainty measure.

What differentiates our problem from these works is that

each measurement in our system takes a long time, and

the uncertainty in measurements is considerably larger. We

address these factors in our strategy by using the best worst-

case behavior as our objective function, and limit the number

of measurements as part of our planning process.

We start with an overview of the system and present our

search and active localization strategies in Sections IV and V

respectively.



Fig. 1. Left: Fish biologists manually tracking carp. Center: Targeted removal of the carp aggregation in Lake Lucy, MN, USA, using a large under-ice
seine. Over 95% of all carp in this lake were captured in 4 hours. Photos courtesy of Peter Sorensen. Right: Robotic boat during coverage experiments at
Lake Keller, MN, USA. A directional loop antenna can be seen mounted on a pan-tilt unit.

III. SYSTEM DESCRIPTION

Our system consists of an autonomous robotic boat with

on-board sensors, radio tags and receiver, and a directional

antenna. We discuss each of these in turn.

A. Robotic Boat

The hull of our robotic platform (Figure 1) is the QBoat

designed by Oceanscience1. The QBoat has dimensions of

182cm × 71cm, and can carry a payload of approximately

40kg. The boat is capable of a maximum speed of 1.65m/s.

An on-board 12V, 30Ah NiMH battery allows approximately

two hours of continuous operation.

The electronics on-board the boat (Figure 2) consist of a

laptop running high-level software, an Atmel micro-controller

board for low level interface, radio receiver equipment (de-

scribed in the following section), a digital compass and a

Garmin 18x Global Positioning System (GPS) unit. We also

have a remote override radio control system that can directly

control the boat, if desired.

We have a modular software architecture based on the

Robot Operating System (ROS), comprising of packages for

navigation, localization, simulation, and reading sensor data.

ROS allows remote monitoring of data from another computer

on the shore via an ad-hoc network formed with the on-

board laptop. At the core of the navigation package is the

implementation of a waypoint navigation algorithm reported

in our previous work [2], with an EKF-based localization

routine similar to the catamaran solution presented in [14].

The electronics and software can be easily transferred to other

platforms. In fact, in winter we move the system to a ground

robot used on frozen lakes [4].

B. Radio Tag and Receivers

For sensing the fish, we use radio tags manufactured by

Advanced Telemetry Systems (ATS)2. A complete fish sensing

system by ATS consists of radio tags, a loop antenna connected

to a radio receiver, and a data logger which provides the

computer interface for the receiver. Each radio tag emits a

short pulse roughly once per second. The radio antenna (shown

on top of the boat in Figure 1) is used to detect these pulses.

The radio receiver reports the received signal strength of

the pulse. However, the signal strength is not directly useful

1http://www.oceanscience.com/
2http://atstrack.com
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Fig. 2. Top view of the electronics compartment: On-board electronics
comprises of a laptop, GPS, micro-controller board, batteries, digital compass,
motor controller, and radio receiver.

in determining the distance to the tag, as it also depends on

the unknown depth of the fish, conductivity of the water, and

the remaining battery-life of the tag. Therefore we rely only

on the directional nature of the antenna, and obtain a bearing

measurement towards the tag. Our method for estimating the

bearing is presented in Section V.

The tag on each fish is assigned a unique frequency. The

receiver can be programmed to tune in on one or more

frequencies. In the search phase, we program the receiver to

loop through a list of frequencies of tagged fish present in

the lake. To reliably detect a pulse from a tag, the receiver

needs to stay tuned on the corresponding frequency for more

than one second since the tags emit pulses at about 1Hz. After

detecting a radio tagged-fish in the search phase, we program

the receiver to tune only to the corresponding frequency and

switch to the localization phase. In the search phase, described

in the next section, we do not rotate the antenna or obtain

bearing measurements, since the goal of this phase is only to

detect the presence of a tag.

IV. SEARCH AND COVERAGE

The first phase of our monitoring task is to search for all

tagged fish in the lake. One of the current models for carp

mobility suggests that each fish moves to its preferred region

in the lake during day time, and remains in that region for long

periods of time [3]. To increase the efficiency of our system,

we restrict the search to only those regions of the lake which

are likely to contain the fish (Figure 3). We assume that these

regions are connected in the sense that there is a path between

any two points. We also assume the fish remain stationary
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Fig. 3. We incorporate domain knowledge to restrict the search region for
the fish to a given set of regions, e.g. R = {R1, R2, R3}. A simple approach
of discretizing these regions and finding a TSP tour becomes infeasible when
the regions are large.

for the duration of covering a region and reduce the search

problem to a coverage problem.

The radio antenna has limited sensing range. A given robot

path is said to cover a point if the point lies within the

sensing range of the robot at some instance along the path.

The coverage problem can be defined as follows: Given a set

of connected regions R = {R1, R2, . . . , Rn}, find a minimum

length tour which covers every point in each region Ri ∈ R.

A possible approach for solving this problem is based on

the Traveling Salesperson Problem (TSP). We can discretize

each region with a resolution dependent on the sensing range

(Figure 3), and compute a TSP tour of this set of points.

However, approximation algorithms for TSP usually require

a metric graph, which is typically represented as a complete

graph whose vertex set is the point set to be covered. In

such a representation the number of edges is quadratic in the

number of points. As the lake size or the sampling granularity

increases, maintaining and operating on this large graph can

become infeasible.

The coverage problem defined above is a generalization of

Euclidean TSP and consequently NP-Hard. Next, we present a

general approach for solving the coverage problem and show

that the length of the path using this approach does not deviate

significantly from the length of an optimal tour.

A. Algorithm Description

Our general approach is composed of two steps. First, we

compute a tour τR that visits all the regions in R exactly once.

We say that region Ri is visited if any point in Ri is visited by

the tour. The tour τR imposes an ordering on the regions, and

defines (possibly same) entry and exit points for each region.

The entry and exit points are where τR intersects a region

for the first and the last time. Such a tour is not necessarily

a solution to the original problem, since it is not guaranteed

to cover all points in each region. We compute a coverage

tour CRi
for each region Ri ∈ R independently, starting and

finishing at the entry and exit points for each Ri. The final

tour τ is constructed by augmenting the coverage tours of each

region to the visiting tour τR.

We now analyze the performance of this algorithm. Let

OPT be an optimal tour which visits and covers all the

regions in R in minimum time. Let τ∗R be the optimal tour

which visits all the regions in R. Since OPT also visits all

the regions in R, we have |OPT | ≥ |τ∗R|, where |τ | denotes

the length of tour τ . Let C∗

Ri
be the optimal coverage tour

for a region Ri. OPT covers every region in R therefore, we

have |OPT | ≥
∑

Ri∈R |C∗

Ri
|.

Suppose we use an α-approximation algorithm for com-

puting τR, and a β-approximation algorithm for finding the

coverage tour of each region. Then the tour τ obtained by

visiting the regions according to the order given by τR, and

covering each region independently when it is visited, has a

cost of at most α|τ∗R|+
∑

Ri∈R β|C∗

Ri
|. Equivalently,

|τ | ≤ α|τ∗R|+
∑

Ri∈R

β|C∗

Ri
| ≤ α|OPT |+ β|OPT |

∴ |τ | ≤ (α+ β)|OPT |

Therefore, this approach costs at most a factor (α+ β) of an

optimal algorithm.

We now present algorithms for the two components of the

strategy: computing a tour that visits the regions and covering

the regions with specified entry and exit points.

B. Visiting the Regions: TSPN and the Zookeeper Problems

Computing a tour τR that visits all the regions depends

on the geometric properties of the regions. This problem is

commonly known as TSP with neighborhoods (TSPN). Most

geometric instances of the TSPN problem are NP-Hard. In

general, we can use constant-factor approximation algorithms

for TSPN such as [15] to find τR and α.

In our application, it is reasonable to model the lake as

a simply-connected region, i.e., without any holes. Further,

regions of interest where the fish may lie are usually close

to the shore. If the regions are convex polygons touching

the boundary of a simply-connected lake then the tour can

be computed using the so-called zookeeper’s route [16]. This

special case of the TSPN can be solved optimally (α = 1) in

polynomial time due to the following lemma.

Lemma 1 ( [16]): Let R = {R1, R2, . . . , Ri, . . . , Rn} be a

set of convex regions located along the perimeter of a simply

connected polygon P . There exists an optimal solution for

visiting the regions in R which visits them in the order they

appear along the boundary of P .

Once the ordering of the regions is known, the shortest

tour visiting all regions can be calculated using dynamic

programing. The exact solution is given in [16]. We use a

simpler solution by discretizing the boundary of the regions

for determining the entry and exit locations for each region.

We build a table C(i, si) which stores the length of a tour that



s

ta

b

Fig. 4. Covering a rectangle with given entry and exit points (s and t) with
a 2-approximation: Follow π from s to a, complete π, follow π from b to t.
In the worst-case the optimal path π is covered twice.

enters the region Ri at location si for the first time. The entries

of the table are computed using the following recurrence:

C(i, si) = min
ti−1

[

min
si−1

(C(i− 1, si−1)) + d(ti−1, si)

]

, (1)

where si−1 and ti−1 lie on the boundary of Ri−1 and d(x, y)
is the Euclidean distance between points x and y. The cost

of entering the region Ri at point si is equal to the minimum

cost of reaching the previous region, Ri−1, entering at location

si−1, plus the shortest distance from Ri−1 to Ri, d(ti−1, si).
By Lemma 1, the ordering of the regions is optimal. Since we

cover all possible values of t and s, the algorithm computes

an optimal solution up to the discretization error.

To turn these tours into coverage paths, we need a way

to cover a region with specified entry and exit points. We

next present such a technique when the regions are arbitrarily

oriented rectangles. Rectangles are both easy to specify and

general enough for practical purposes.

C. Covering Regions with Given Entry and Exit Points

The algorithm presented in Section IV-B generates an entry

and exit point for each region. These points impose a constraint

on our algorithm for finding a path that covers the rectangle.

The following lemma shows that we can cover a rectangle

satisfying this constraint, and be only a constant factor away

from an optimal coverage path without such constraints. We

assume that the rectangle has an x × y grid imposed on it,

such that visiting all grid cell covers the rectangle.

Lemma 2: Let R be a rectangle with a grid imposed on it.

Let s and t be two grid points on the boundary specified as

entry and exit points. There exists a tour T which starts at s,

visits every grid point and exits at t such that the length of

T is at most twice that of an optimal tour which visits every

grid point but can start and end at any points on the boundary

of R, not necessarily s and t.

Proof: Let π be the optimal path to cover R without any

restrictions on the starting and ending points. When R is a

rectangle, π is a boustrophedon path which visits every point

exactly once.

Suppose that π starts at a and ends at b. Note that s, t ∈ π.

Without loss of generality, we assume that t is between s and

b along π (See Figure 4). We form a coverage path from s to

t using π as follows: From s, go to a along π and come back

to s by retracing these steps. Then go to b from s along π

(passing through t). Finally, arrive at t from b along π. This

path visits every point on π and has length at most twice that

of π.

The result is tight; when the input is a rectangle with one

side length equal to r, and s = t, each point is covered twice.

To summarize, we showed that the following algorithm for

covering rectangles along the boundary of a lake is an (α+β)-

approximate algorithm with α = 1 and β = 2.

(i) Compute the shortest tour τR which visits each region

in R using the dynamic programming solution presented in

Section IV-B. This algorithm returns an entry and exit point

for each rectangle, along with their ordering.

(ii) Follow τR as follows: Starting from the entry point of

an arbitrary region, whenever a region is visited, cover it using

the strategy given in Lemma 2 which ends at the exit point.

Move to the entry point of the next region given by τR and

repeat till all regions are visited.

D. Experiments

We implemented this search algorithm on our robotic boat

and evaluated it through field trials at Lake Phalen, MN,

USA. The input regions for one such trial are shown in

Figure 5(a) (chosen arbitrarily for testing our algorithm). The

series of offline waypoints generated by our algorithm are

shown in Figure 5(b). We used an empirically determined

sensing range of 50m to generate the boustrophedon paths. The

actual trajectory executed by the robot is shown in Figure 5(c).

The robot traveled a total distance of 5.6km in about 87min

while executing this trajectory.

While moving along the search path at certain locations,

the robot detected signals from five radio-tagged fish and a

reference tag present in the lake. Such robot locations are

marked with the corresponding tag frequency in Figure 5(c).

The actual position of the fish can be anywhere within a

distance equal to the sensing range from these locations. To

better localize the fish, we switch to the localization phase

whenever we detect a signal on one of the tuned frequencies.

We describe our algorithms for the localization phase next.

V. LOCALIZATION

The objective of the localization phase is to use bearing

measurements from the radio antenna to localize a tagged

fish accurately, once it is found during the search phase. The

boat must choose sensing positions which provide the most

information about the location of the tag. We use an EKF to

estimate the position of the tag and represent the uncertainty

in the position of the tag with its covariance. We seek sensing

locations which minimize the determinant of the covariance

matrix.

We begin by describing how we use the signal strength

output of the radio receiver to obtain bearing towards the tag.

A. Measurement Model

The received signal strength varies with the relative angle

of the plane of the loop antenna with the tag. If the tag is

directly aligned with this plane, the signal strength is highest.

Since the antenna is mounted on a pan-tilt unit we can rotate
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(c) Actual path executed by the robot.

Fig. 5. Coverage experiment conducted at Lake Phalen, MN, USA. (a) the four input regions, (b) the path found by the algorithm described in Section IV, (c)
the actual path followed by the robot during coverage. The robot traveled a total distance of 5.6km in about 87min. Locations where signals from radio-tags
were detected are also marked, along with their frequencies.

it and sample the signal strength as a function of the relative

angle from the boat. We fit a smooth function to the samples

obtained and use the point of maximum value of this function

as the bearing measurement. Based on a number of trials,

we concluded that least squares fitting of a cubic polynomial

works best for computing the bearing in our system.

Note that the bearing obtained is an infinite line (as opposed

to a directed ray), and hence there is ambiguity in the obtained

bearing. For example, if α is the direction with maximum

signal strength, then α and α + π are both valid bearing

measurements. We disambiguate by moving along either α or

α+π and checking if the signal strength increases or decreases.

A detailed description of other methods for disambiguating the

measurements is given in [17].

B. Optimization of Robot Motion

Since measuring the bearing takes time (about 1min), the

estimation must be performed using a small number, say k,

of measurements. Further, these locations must be chosen

in an online fashion as the measurements become available.

We present three strategies to compute k sensing locations,

and compare their performance in simulations and real-world

experiments.

All three active localization strategies require an initial

estimate of the tag. In [4], we presented a scheme to initialize

the target based on two bearing measurements taken from

different sensing locations. Using this initial estimate, we

propose the following three strategies to determine the next

k sensing locations of the robot.

1) FIM: The Cramer-Rao Lower Bound (CRLB) for an

unbiased estimator is a lower bound on the estimation error

covariance. This lower bound is equal to the inverse of the

FIM (denoted by I) for the k measurements. The determinant

of I is inversely proportional to the square of the area of the

1-σ uncertainty ellipse, and is commonly used as the objective

function to be maximized. For k bearing measurements with

zero-mean Gaussian noise, the determinant of I (denoted by

|I|) is given as,

|I| =
1

σ4

k
∑

i=1

k
∑

j=1

[

sin(θi − θj)

didj

]2

. (2)

where θi and di is the angle and distance from the ith sensing

location to the true target location.

We impose a grid of size n × n centered at the current

position of the robot. To compute the k sensing locations,

we exhaustively consider each of the
(

n2

k

)

combinations as a

candidate trajectory, and compute |I|. An optimal trajectory

can then be chosen as one with the minimum value of |I|.
2) Greedy: Instead of computing a fixed path for the k

measurements, we can use an online greedy strategy which

picks the next sensing location based on the current estimate

and uncertainty of the position of the tag. Given the current

robot and tag estimates, Greedy considers all neighboring loca-

tions of the robot as candidate sensing locations, and computes

the posterior covariance by simulating an EKF update at each

sensing location with a discretized set of possible bearing

measurements. Greedy then picks the candidate location where

the determinant of the posterior is minimum.

3) Enumeration Tree: We extend the objective function of

Greedy to look ahead k measurements, in the Enumeration

tree strategy. We build a min-max tree that explores the set of

all sensing locations and all possible measurements that can

be obtained, since the uncertainty depends on both. The tree

consists of two types of nodes at alternate levels (Figure 6):

MAX nodes (ui) represent neighboring robot locations to the

current, and MIN nodes (zi) represent the discretized set of

possible measurements. Each node stores an estimate of the

target’s state and covariance by simulating EKF updates based

on the sensing locations and bearing measurements stored

along the path in the tree. Details are presented in [4].

u1 u2 u8

z1 z12

u1 u8

......

...

.....

MAX

MIN

Leaf

z1 z12

u1 u8

.....

...

MIN

Neighboring

Locations

Candidate

Measurements

Fig. 6. Min-max tree: u1, . . . , u8 are the neighboring locations for the robot,
and z1, . . . , z12 are candidate bearing measurements.

Once the tree is built, the min-max values for each node

are propagated bottom-up starting with the leaf. The min-max



value for the leaf nodes is defined as the determinant of the

simulated posterior covariance matrix stored at that node. The

min-max value for all MAX nodes is the max of min-max

values of its children, and that for non-leaf MIN nodes is min
of min-max values of its children.

During execution, the robot chooses the MAX node with

the minimum min-max value as next sensing location at each

iteration. The MIN node is chosen as per the actual bearing

obtained. Since we use discrete measurement samples, there

might not be a node with bearing exactly equal to the actual

measurement. In addition, there is uncertainty associated with

the position of the robot itself. Hence, we use the Bhattacharya

Distance [18] to find a MIN node with posterior covariance

closest to the covariance after the measurement update.

C. Simulations and Experiments

We first compared the performance of the three active

localization strategies in simulation. We ran 100 random trials

with the true tag 25m away from the starting position of the

robot in each trial. A grid with side length 3m was used to

generate sensing locations for 3 measurements. We generated

noisy bearing measurements by corrupting the true bearing

with Gaussian noise (σ = 15◦).

The mean errors for FIM, Greedy, and Enumeration tree

were 6.30m, 5.98m, and 5.73m, and the mean determinant

of the final covariances were 54.81, 40.59, and 48.36 units

respectively. The poor performance for the FIM strategy can

be attributed to the fact that it is an open-loop strategy which

depends on the initial estimate. Further, it computes locations

which minimize the lower bound on final uncertainty of an

“efficient estimator” (i.e. estimator whose variance is equal

to the CRLB). Since EKF is not an efficient filter, there is

no guarantee that it would achieve this lower bound. On the

other hand, the Enumeration tree and the Greedy compute the

actual covariance of the EKF estimator and pick the location

which would minimize its determinant.

Although the Enumeration Tree performs better than the

Greedy strategy, the performance gains are not significant to

warrant the extra computational time. Hence, we decided to

use the Greedy strategy on our system in field experiments. To

test the system we conducted field trials with a reference tag

submerged in a lake at a known position. The results from one

such trial are shown in Figure 7. Sensing locations r4, r5, r6
were obtained by running the Greedy strategy. The resulting

1-σ uncertainty ellipses are shown (in blue) along with the

tag estimates (as red crosses). The true location of the tag is

marked by a black star. The final error of this triangulation

was 1.21m, with 1-σ bounds of 3.3m and 2.7m in the x and

y directions, respectively.

The field experiments demonstrate that our system is capa-

ble of localizing stationary reference tags reliably. Next, we

present complete field experiments where the robot executed

both the search and localization phases.

VI. FIELD EXPERIMENTS

In this section, we report results from two field tests

conducted at Lake Gervais in MN, USA. In the first test, a
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Fig. 7. Localization experiments with the Greedy strategy. Ellipses shown
encompass the 1-σ uncertainty after each measurement. We use the second
measurement to disambiguate which side the tag lies from bearing obtained
at r1. Bearing measurements are shown as solid green lines.

reference tag was deployed at a known location. In the second

test, we searched for tagged fish present in the lake.

Figure 8 shows results from the first experiment with a

reference tag deployed at the location marked in Figure 8(b).

The robot executed the coverage pattern while continuously

monitoring the radio antenna on the frequency of this ref-

erence tag. After detecting signal from this radio tag at r1
(Figure 8(c)), the robot switched from the search phase to the

localization phase.

During the localization phase, the robot executed the Greedy

strategy with k = 2 measurements, in addition to the two ini-

tialization measurements taken at r1 and r3. The measurement

at r2 is used to distinguish which side of the bearing at r1 the

fish is located by comparing their signal strengths. The robot

then moved to r4 and r5 and obtained bearing measurements

as shown. The 1-σ uncertainty ellipse after each step is also

shown. After completing the localization, the robot continued

to cover the rest of the regions. The robot covered a total path

of approximately 2km in 49min.

The second field trial (Figure 9) was conducted in the same

lake without a reference tag. We programmed the robot to

search for frequencies corresponding to actual radio-tagged

fish present in this lake. While searching the first region, the

robot detected one of the frequencies in the list, executed

the localization strategy, and returned to the search plan.

Figure 9(b) shows the coverage path followed by the robot.

The red box marks the area where the robot followed the

localization strategy to obtain additional bearing measurements

and localize the unknown tag. Figure 9(c) shows a closeup of

the localization phase. Since this was an actual radio-tagged

fish, the ground truth is unknown.

VII. CONCLUSION

We presented a novel system for monitoring radio-tagged

invasive fish. We divided the monitoring task into two sub-

tasks of finding the tagged fish and localizing them accurately.

For the first task, we presented an algorithm for finding a tour

whose length is at most a constant factor away from an optimal
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(c) Localization with reference tag.

Fig. 8. A field trial on Lake Gervais, MN. The robot covered the regions via the path shown in the middle figure. On the right, a closeup of the localization
of a reference tag is shown. The true location of the reference tag is marked with a black star. The red box in the middle figure corresponds to the triangulation
area on the right.
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(b) The track of the robot during coverage.
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(c) Close up of the measurements.

Fig. 9. Field experiments at Lake Gervais, MN. Figure 9(a) shows the areas we wish to cover. The computed search path and the trajectory executed by
the robot are shown in Figure 9(b). Upon detecting a tag, the robot executed a localization strategy as shown in Figure 9(c). Because the robot attempted to
triangulate a tagged fish, we do not know the true location of the tag.

tour. For localizing the tagged fish, we first showed how the

bearing of the tag can be estimated by using measurements

obtained by rotating a directional antenna. Next we addressed

the problem of actively choosing sensing locations to reduce

localization uncertainty. We compared three algorithms in

simulations and field experiments, and incorporated the most

effective one into our system. We concluded the paper with

additional field trials.

While the initial results are encouraging, there is significant

future work including developing fish mobility models and

corresponding search and tracking algorithms. We plan to use

multiple boats to improve the coverage time and localization

uncertainty. Additional issues faced when building such a sys-

tem (e.g. communication and coordination) must be addressed.

Finally, we plan to use our system in larger lakes and help

biologists to study carp behavior.
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