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Abstract When a battery-powered robot needs to operateesults from experiments conducted on a custom-built robot

for along period of time, optimizing its energy consumptionfor following optimal velocity profiles.

becomes critical. Driving motors are a major source of - . .
. . ) Keywords energy-efficiency trajectory-planning

power consumption for mobile robots. In this paper, we

study the problem of finding optimal paths and velocity

profiles for car-like robots so as to minimize the energy; |ntroduction

consumed during motion.

We start with an established model for energy consumpEnergy optimization is a fundamental requirement to
tion of DC motors. We first study the problem of finding the achieve long term autonomous deployments of mobile
energy optimal velocity profiles, given a path for the robot.fobots. One of the main bottlenecks for robots is the limited
We present closed form solutions for the unconstrained cadéetime of on-board batteries. To extend the system fifietj
and for the case where there is a bound on maximum velodt is critical to optimize the energy consumption of the
ity. We then study a general problem of finding an energyobot, in addition to harvesting additional energy. Motion
optimal path along with a velocity profile, given a starting iS @ major source of energy consumption. In this work, we
and goal position and orientation for the robot. Along thestudy the problem of minimizing the energy consumption by
path, the instantaneous velocity of the robot may be bounde@Ptimizing the motion of the robots.
as a function of its turning radius, which in turn affects the  In particular, we focus on car-like robots powered by
energy Consumption_ Unlike minimum |ength paths' mini-DireCt Current (DC) motors. It is well-known that the energy
mum energy paths may contain circular segments of varyingonsumption of a DC motor depends on its angular speed
radii. We show how to efficiently construct a graph whichand acceleration [1]. The angular speed and acceleration
generalizes Dubins’ paths by including segments with arof the driving DC motor in turn controls the translational
bitrary radii. Our algorithm uses the closed-form solutionvelocity and acceleration of a car-like robot. We study the
for the optimal velocity profiles as a subroutine to find theProblem of computing a path and the corresponding velocity
minimum energy trajectories, up to a fine discretization. weProfile of a robot so that it consumes a minimum amount of
investigate the structure of energy-optimal paths and-highenergy to travel.
light instances where these paths deviate from the minimum The classical problem of optimizing the path and
length Dubins’ curves. In addition, we present a calibratio Velocity profiles for mobile robots while satisfying velogi

method to find energy model parameters_ Fina”y, we preserﬂndlor acceleration constraints is known as kinOdynamiC
planning [7]. The pioneering work for finding minimum

length paths for a forward-only car-like robot was done
A preliminary version of this paper without the path plargisection by Dubins [8]. Reed and Shepps [21] extended this work
appeared in [23]. for a car that can go forward and backward. Balkcom and
P Tokekar N. Karnad. V. Isler Mason [?] used an opFlmaI control formulatlo.n to glenve t.he
Dept. of Computer Science & Engineering, University of Misota. ~ time optimal trajectories for bounded velocity differeatti
200 Union Street SE, Minneapolis, MN 55414, U.S.A. drives. Recently, Chitsaz et al. [4] used similar techngque
E-mail: {tokekar, karnad, islg¢@cs.umn.edu to give the complete characterization for minimum wheel
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rotation paths for differential drive robots. As we will sho  Our work differs from this literature in that we use the
the minimum length or time paths are not the same as thkinematic and energy model for a car-like robot. In addition
minimum energy paths. Figure 1 shows one such instanoge focus on simultaneously computing the energy optimal
where the energy optimal path deviates from the minimunpath and velocity profile along this path.

length (Dubins’) paths. In order to compute velocity profiles, the power

consumption needs to be modeled. Mei et al. [20] model

Energy-Optimal Path the power consumption as a sixth-degree polynomial of

- - - Dubins Path the robot's speed using experimentally collected data.
Min. Energy Path However, their model does not incorporate acceleration.
7 T More importantly, they use this model to compare velocity

profiles but do not address the problem of computing an
. optimal profile.

! Kim and Kim [16] find the optimal velocity profile for
/ a robot moving on a straight line, when the total time to
‘ travel is fixed. However, this solution does not incorporate
, any bound on maximum velocity of the robot. In [15],
70150) :;5;)": """"" they propose a rotational trajectory planner that minimize
o o the energy consumption. They do not present a systematic
method to combine the solutions for translational and
Fig. 1 The minimum length path consists of 3 circular segments,rotational trajectories. Thus, it is not clear if this apach

whereas the minimum energy path consists of a straight égenent : : : :
and 5 circular segments of varying radii. The optimal velogirofile yields an optimal solution. Wang et al. [24] studied the

along the path is given by the color in the heat map along tte fae prol?lem of findin.g a minimum energy tra.pezoidaI. Ve_|0City
straight line and circular segments with higher turningiuacallow  profile. As we will show shortly, trapezoidal profile itself
the robot to move at a higher speed and thus for a lesser tadé®  js not optimal in terms of total energy consumption. In
to lower energy consumption (despite being longer). Weapthis 54 4ition they do not consider any upper bound on the
trade-off between velocity, turning radius, path lengtld @mergy in . . . .
this paper. velocity of the robot. Further, their technique is only
applicable for turn-in-place-move-forward type of motion

o o . for differential drives, and is not experimentally verified
Existing literature of finding minimum energy paths

for robots includes the work of Sun and Reif [22] who
consider the problem of computing the optimal path for
robots traversing a terrain. Under the assumption that th

Broderick [3] et al. studied the problem of computing
energy-efficient velocity profiles for a tracked robot. The
Bath of the robot was computed using a boustrophedon cov-

friction coefficients are known across the terrain, theysho erage pattern and decomposed into straight-line segments

how to compute a path that requires minimum energy t&nd turns. The goal was to compute the velocity profile for

overcome frictional forces. This work generates the path buthe left and right tracked wheels along each segment. The

does not yield an optimal velocity and acceleration profile COSt function for each segment penalized a linear combina-
Furthermore, the paths found are piecewise linear whicfon Of the control inputs, efficiency of the motors, and the
cannot be directly applied for car-like robots. fraction of area not covered by the trajectories before the

With recent advancements in hybrid and electriCStartOfthe current segment. Based on this cost-functien, t

vehicles technology, power management and optimizatioﬂaper presented trade-offs between the control inputs and
has received considerable interest in the automotive lsectgje area covered by the robots.

(see e.g. [12]). Research studies in this area target In this paper, we study the problem of computing paths
power optimization based on the users’ input and drivingand velocity profiles for forward-only car-like robot that
profiles. However, there has been little work on findingminimizes the energy consumption in a flat, obstacle-free
energy efficient trajectories for vehicles that navigateenvironment. First, we focus on the case of finding the
autonomously. Energy optimal trajectory planning has als@nergy optimal velocity profile when the path is given.
been studied for robotic manipulators. Gregory et al. [11Depending on the application, a high-level planner can
studied the problem of finding energy-optimal control irgout specify the exact path to be followed by the robot. However,
for a manipulator with two revolute joints to follow a often the velocity along the path is free to be arbitrarily
prescribed path. Wigstrom et al. [25] studied the problenset. For such situations, we present a closed form solution
of scheduling jobs for possibly multiple industrial robots for the velocity and acceleration profile that minimizes the
where each job requires the robot to optimize its controbnergy consumption, based on our model. Next, we consider
profile with respect to energy and follow a prescribed paththe problem of computing the minimum energy path itself,
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given a start and goal position and orientation (pose) fer th2.1 Energy Model
robot.

Dubins [8] first showed that the minimum length pathsConsider a robot with car-like steering, with forward,
between two poses for car-like robots consists of at mogfanslational velocity provided by a DC motor. We use the
three segments. Furthermore, each segment is one of thré¥@del described in [1] for energy consumption in a brushed
types: straight line, left turn with minimum turning radjus DC motor. This detailed model takes into account the energy
and right turn with minimum turning radius. As we discussdissipated in the resistive winding, the energy required to
in detail in this paper, for minimum energy paths there isovercome internal and load friction and the mechanical
a trade-off between the length of the paths, turning radiugpower delivered to the output shaft. The instantaneous
frictional forces, velocity and acceleration of the robot.currenti(t) in the motors is given by,
Unlike minimum length paths, a minimum energy path may 1 deo(t
contain segments with varying turning radius (Figure 1)i(t) = Ko {TF +T 4+ Dw(t)+ (Iv+d) at } (2)
To accommodate this, we present a graph (terieergy T
Roadmayjp which generalizes the notion of Dubins’ paths and the voltage(t) across the motor is given by,
by including turns with arbitrary radii on a discrete set of
poses. The Energy Roadmap also incorporates the close®l) =i(t)R+Kew(t) 3)

form solution for optimal velocity profiles. We show how wherec(t) is the angular velocity of the motdte andKr

to build this structure efficiently, and present details of ;
) . ) ; ) are back-electromotive force and torque constahtsand
an implementation. Finally, we investigate the structure o . o . .
T, are internal and load frictional torqud3; is the internal

minimum energy paths found using our algorithm, and .
highlight instances when these paths deviate from thgamplng, andjy andJ are motor and load moments of

Dubins’ paths inertia.
P tor Since linear velocity of the robot and angular velocity

The rest of the paper is organized as follows: The ENETY¥t the motor for a car-like robot are proportional to each

QOd.EI agdvt/hedfor.malhproble.m lstatlem_ent ar; pres.err:tedd@[her, we can rewrite Equations 2 and 3 to yield the energy
ection 2. We derive the optimal velocity profiles with an consumption for traveling from= 0 tot = t; as,

without a maximum velocity bound for a path with single
segment in Sections 3 and 4 respectively and for multipI% B /tf [e(t)i(t)}dt
segments in Section 5. The application of these results — J ‘
to simultaneously compute the minimum energy path and
velocity profiles is presented in Section 6. Experiments on
our custom-robot are presented in Section 7 along with a
calibration procedure for estimating the parameters of the
energy model in Section 7.1. We conclude with a discussiophere constants; ..
on the utility of our results in Section 8.

~—

= /(:f [Claz(t) + Csz(t) + cav(t)
+Catcsalt) + Cav(t)a(t)] dt. 4)

.,Cg are combinations of the motor

parameters, ang(t) and a(t) are the linear velocity and

acceleration of the robot obtained framit) and the radius

of the wheel. When the initial and final velocity values

2 Problem Formulation are the same forr, the net contribution by the terms
corresponding tas andcg is zero and can be ignored [1].

First consider the problem of computing the optimal velpcit Hence, we can rewrite the energy model as,

profile when given a pathr on which the robot will 4

move. The instantaneous position of the robot alang E :/ [claz(t)+c2v2(t)+c3v(t)+c4}dt. (5)

represented by a single variable of tim@). The linear 0

velocity and acceleration of the robot along this path arerhe constants,...,c4 depend on the motor parameters

represented by(t) and a(t) respectively. We define the which in turn depend on the robot design and the surface

state of the robot by (t) = [x(t),v(t)]". The state transition on which the robot is moving. These parameters can

equation can be written as, be obtained using the calibration procedure presented in
Section 7.1.
X(t) = F(t)} _ [v(t)} (1) The robot's wheels may slip when it is making a
v(t) a(t) sharp turn at a high speed. The maximum speed with

which the robot can move along is a function of the
wherea(t) is the control input. instantaneous turning radius, the inertia of the robot &erd t
We first describe the energy consumption model for thdrictional forces with the surface. We assume the maximum
robot, before formally stating the problem. centrifugal force without slipping can be specified by a
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parameteFnax. Thus the maximum safe translational speedalgorithm first computes a graph (as presented in Section 6),

without slipping will be, smoothness constraints and the steering cost can be idclude
while searching for the optimal solution in the graph. We

Vin(t) = Fimax' (t) 7 (6) assume that there are no obstacles in the environment. Many
m sampling-based planning algorithms that consider olesacl

often require a subroutine that computes the optimal cost
and path between two poses in an obstacle-free environment
(see e.g. [14, 19]). Hence, we focus on the fundamental
case of finding energy-optimal paths without considering
obstacles, which can be used as subroutines for the general

2.2 Problem Statement case.

wherer (t) is turning radius andh is the mass of the robot.
Any other function of the formvy(t) = f(r(t)) can be easily
incorporated in our algorithm.

Let D be the total length of. The energy consumption for Problem 4 Given start and goal poses, compute a path

a velocity profilev(t) traversingr is given by Equation 5. and a velocity profile along this path for a car-like robot to
The final timets can be fixed or kept free. The robot starts minimize Equation 5. The velocity at all times must obey
from and returns to rest over This gives us the following the constraint given by Equation 6. The robot starts at and
boundary conditions, returns to rest.

v(0) =0, v(tt) =0, x(0) =0, x(tf) =D (7 The solutions for Problems 1, 2, 3 & 4 are presented
) _ ) in Sections 3, 4, 5 & 6 respectively. Problems 1 & 2 form

. We study four problem; of Increasing generallty. Fort_hespecial cases of the last two problems and provide insight

first threg prqblems, th_e objective is to f|r.1d a"?'oc'ty pefil into the structure of general optimal velocity profiles. We

v(t) to minimizeE, subject to the constraints given below: use the generalized solutions of the first two problems, with

non-zero boundary conditions, as subroutines for solving

Problem 1 1 consists of a single segment. There is no
Problems 3 & 4.

bound on the maximum velocity of the robot, i.g() >
0 for 0<t <t. Find the optimal velocity profiles/*(t)
minimizing Equation 5 subject to state transition and
boundary constraints given by Equations 1 & 7. 3 Optimal Velocity Profile without Bounds

Problem 2 1 consists of a single segment. The maximumin this section, we present the solution to Problem 1, when
velocity of the robot overt is bounded by constant the pathr consists of a single section with no bound on the
Vm, i.e., 0<v(t) <vm for 0<t <tf. Find the optimal maximum velocity of the robot. We first state the necessary
velocity profilev*(t) minimizing Equation 5 subject to state conditions and present the closed form solution for the
transition and boundary constraints given by Equations 1 &ptimal velocity profile. Then, we discuss and provide
7. insights for the structure of the optimal profile. Finally,

. . we compare the optimal profile with the commonly-used
Problem 3 1 consists ofN segments composed of straight trapezoidal velocity profile.

lines and curves. There is a separate velocity bound for
each segment given by vm(i). vm(i) is constant over
the i!" segment. LetD(i) be the distance to travel for
each 1< i < N. Find the optimal velocity profiles(t)
minimizing Equation 5 subject to state transition and
boundary constraints given by Equations 1 & 7.

3.1 Solution to Problem 1

When there is no bound on the maximum velocity, the
Hamiltonian [17] for this problem can be obtained as,

Finally, we consider the problem of computing the path 2
T itself. 7 is specified by the steering control inppit) and HX(®),a1),A(1).1) = (1) + e () + cav(t)
the translational velocity(t). The robot starts at and returns + CatAr(t)V(t) +A(t)alt) (8)
to rest. We do not consider the cost of steering, and assumg, e Mi(t) and A(t) are the Lagrange multipliers and
for simplicity that the robot can instantaneously SWitChacceIeratiora(t) is the control.
the steering input. There are existing techniques [9, 18] to The three necessary conditions &it)
compute continuous trajectories for car-like robots Wherefﬂamiltonian for all timet € [0,t]
the rate of change of the steering input is bounded. The ’
physical interaction between the surface and the steering OH .. 9H IH
wheel has also been extensively studied [6]. Since ouk' (1) = z5. A () =——o, 0=

to optimize the
are given as,

(9)
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Applying these necessary conditions, we can solve Optimal Velocity Profile
the resulting partial differential equations for the opim ) ‘ ‘ ‘ ‘ ‘
control and states to get,
a'(t) = kg —kse ™ (10) L8l
oL
C o
\f“(t)=slek‘+Szek‘—( 3+53) (11) E
2c1 >
_ kt s 1r
et se C3+S S
X(t) = - - t ) 12 e
=2 -2 ()t az  f
0.5F
C
wherek = C—z andsy,...,s4 are constants.
1
We can solve fos,,...,s in terms of the final times % : 15 1 o p~ 3‘0
by substituting the boundary conditions given in Equation 7 Time in secs
for v(t) andx*(t). We obtain, Fig. 2 The optimal velocity profilev*(t) for a distanceD = 50m
usingcy, . .., ¢4 obtained during calibration in Section 7.1. The optimal
S =— Dk profile consists of symmetric exponential curves, reachingaximum
ktg 4 € (ktg —2) + 2’ velocity att = t; /2.
= 5 e =20(s1+S)—C
2 3181 ’ 5283 1S +%2) - Co Optimal Control
=——— 13
S " (13) 0s

By substituting in Equations 10-12 we obtain,

N it _ gt
a(t)_D<c_1> (ktf+ek‘f(ktf—2)+2>’
o (14 — (eti—t) gty
V=0 C_1< Kty + & (kt; — 2) + )

en (U g (1) k(e 4 1)
Xm_D( kty + € (ktf —2) +2 )

Acceleration in m/s?
o

-0.5f

0 5 10 15 20 25 30
(14) Time in secs

Fig. 3 Optimal Controla*(t) obtained for traveling a distance of

Sm(?? the final time is fre_e., it can be solved for using theD:SOmcorresponding to the optimal velocity profile shown in Figur
additional boundary condition (known as the transvengalit 5

condition) given by,

H(X*(t),a* (tf),A"(ts),ts) = 0. (15) show that the peak velocity is reachedtat t;/2 and is
2t —1

Substituting Equations 10-12 and 13 above results in, given by, v* (t_f) _ |G (ek ) . The corresponding
. . 2/ Ve (eztf +1)

(Dc—i+2)(1—ektf)+\/C—‘llktf(l—i—ektf):0, (16)  optimal control profilea’(t) is shown in Figure 3. The

acceleration profile is a smooth exponentially decreasing
which is an equation in a single varialtie(all other terms  function. The acceleration is almost zero in the middle
are constant) and can be solved using any existing solveegion (exactly zero at=ts /2).
for transcendental equations. (We used MATLABSero
function). Alternatively, if the final time is fixed, we can
directly substitute this given value in Equation 14 to find3.2 Structure of the Optimal Profile
VE(t).

Figure 2 shows the optimal velocity profile obtained for The optimal velocity profile shows similar structure when
traveling a distance of 50 using Equation 14. It can be the distance to travdd varies. Figure 4 shows the optimal
observed that the profile consists of symmetric accelaratiovelocity profiles for traveling four different distanceshd
and deceleration curves with an almost-constant velocitpptimal profile reaches the same peak velocity and does not
region in the middle. From Equations 14 and 16, we cargo faster even if the distance to travel increases.
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Optimal Velocity Profile Optimal vs. Optimal Trapezoidal

2r 2r L
015" 0 1.5¢
E E
£ <
= 2
g8 1 .
2 2

0.5 0.5¢
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 5 10 15 20 25 30 35
Time in secs Time in secs

Fig. 4 Optimal Velocityv*(t) profiles obtained for traveling distances Fig. 5 Optimal trapezoidal profile computed using the same energy
D = 5,35, 70,100m follow a similar structure. function shown together with the general optimal profile tfaveling

D = 50m. The general optimal profile we compute gains higher
savings with respect to the trapezoidal profile while acetiieg and

From the cost function (Equation 5), we see that bottflecelerating. This yields higher energy savings when ttat distance
. o . to travel is less, a scenario commonly seen when the robotdas
higher velocities (throygh terma_ andcz) and longer t|me§ frequently start and stop.
(throughc,) are penalized by higher energy cost. Consider
a time-optimal trajectory where the solution would be to

move as fast as possible, subject to maximum acceleratiqyse when there is no bound on the maximum velocity of
and deceleration. Such a trajectory would pay a much highgpe yobot. Figure 5 shows the general optimal profile and
instantaenous cost (through termscy, c3) but integrated  ontimal trapezoidal profile computed for traveling a disean

over a shorter time. The energy-optimal trajectory, on thgy; p — 50m, with no maximum velocity constraints.

other hand, achieves the optimal energy trade-off between : i . _
. . The general optimal profile we compute gains higher
moving faster (and consequently for a lesser time) and_ . . . . .
. ] Savings with respect to the trapezoidal profile while
moving slower (and for longer times). In constrast to a

. . : . accelerating and decelerating. For example, the optimal
time-optimal trajectory, the solution for the energy-omi profile yields 194% savings when travelingmi while

trajectory does not exceed the peak velocity, ?—4. The the savings drop to .82% when D = 100m for the

c2 parameters calculated on our custom robot. In situations
where the robot has to frequently stop, following an optimal
profile would result in more energy savings and a longer
Lemma 1 Consider an arbitrary velocity profile(t) travel-  lifetime. In addition, these figures are highly system-
ing a distance D. Let the total energy consumption(bfbe  specific. The velocity profile computed in this work is

E. If the given profile crosse Ca times i and t,1, we guaranteed to minimize the energy consumption for the
Co stated assumptions.

can replace this section ofty, t <t <tj,1 by a constant

following lemma sheds light on this underlying structure fo
the optimal velocity profiles.

. . Cyq . .
velocity section of y= o so that the resulting velocity
2

profile covers the same distance and consumes energy less ) . . .
than 1) 4 General Solution Incorporating Maximum Velocity

Bound

3.3 Comparisons with trapezoidal velocity profile The optimal profile given in Section 3 does not satisfy any
bound on the maximum velocity imposed by the physical

A trapezoidal velocity profile is commonly used for its limitations of the robot. In this section, we solve for the
ease of implementation. A trapezoidal velocity profileoptimal velocity profile for Problem 2, with a bound on the
(see Figure 5) consists of a constant acceleration sectiomaximum velocity(t) < vm. We now derive the analytical
followed by a constant velocity section, followed by a solution for Problem 2 by first discussing the possible
constant deceleration section. In [24], Wang et al. contputestructures of an optimal profile. Depending on the value of
the optimal trapezoidal velocity profile for traveling agiv vy andD, the optimal velocity profile can belong to one of
distanceD. However, their result is only applicable in the the following two cases.
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4.1 Unconstrained optimal profile does not violate bound hold [13],

V(t) < Vm , 1 .. ] ]
X*(t):g—T A (t):3—>H( O:(;—;| a7)
In the case that the optimal velocity profile computed in .
: . ) Additionally, on the two cornerg & tg, t =t —tp), the
Section 3 does not exceed the bound then this profile following conditions must hold for the optimal solution,

is a valid solution for the constrained case too. This happen
[ae dG] T

EL,A@) =A(ty) - [a—x

h i Y b h H((ts —t2)") =H((ts —t2)7)
ave enough time to reach, or o e can observe this At —to)") = A((tr — o))
situation in Figure 4 wheb = 5m.

C . . .

whenvy, > C—4. Additionally, in the case when the distance H (tf) =H(t;)+
2 t

to travel D is small, the optimal velocity profile may not !

(18)

Using the conditions given above, we can solve for the
optimal control and velocity profile in terms of the constant
for the off-boundary exponential curves, and tirhg$, and

4.2 Unconstrained optimal profile violates the bound t¢. The optimal velocity profile in this case is given by,

V(t) < vm

s (ekt pe (14 ez"tl)) :
If the unconstrained optimal profile violates the bound o<t<t,
Vm, the constrained optimal velocity profile will consist of L
unconstrained) (v(t) < vm) and constrained are (v(t) = Vi(t) = 4 v h<t<ti-t  (19)
Vm) joined together atorner points We show that there S (efk(tf T2 et (14 ezktz)) ;
exists an optimal profile with & — C — U sequence (or one tr—tr <t <t;.

of its degenerate casds) — C,C — U,C}) having corner
pointsat timest =t; andt =t; —t, (degeneracy occurs when
either or both ot; andt, equal to 0).

By definition, there cannot be any — U or C —
C sequence, as these do not include aoyner points

We can obtain the values of these constants and times
using the initial and final conditions, the transversality
condition given in Equation 15, and the interior point
constraintv*(t) =vm, t1 <t<tf—tyas,

Combining this observation with the following lemma, we s = _%,
show that the constrained velocity profile is limited to a (€ —1)
U — C — U sequence or one of its degenerate case. S = o Ym
(e 172
Lemma 2 The optimal velocity profile cannot consist any Cq ey
sequence of the for@— U — C. 1 c
t1=tb=-1In (20)

k Cyq

The proof follows a process similar to that in Lemma 1. o —Vm

We show that an — U — C sequence can be replaced by a
singleC segment to reduce the energy consumption.

We now show how to obtain the solution for this case
in closed form. Specifically, we show how to obtaif(t)
for the unconstrained and constrained arcs and compute the_, , ¢ X(t —t) —X'(ta) (21)
corner pointg; andts. Vm

We begin by writing the velocity constraint in the form Figure 6 shows the optimal velocity profile obtained
of state inequalityS = (v(t) — vm) < 0. We convert the for traveling a distance of 2Bwith the maximum velocity
state inequalityS into a control equa[tys(l> and interior  bound set tos,, = 1m/s. Observe that the optimal velocity
point constraintG by differentiatingS once, leading to profile follows an exponential curve till it hits the boungar
S = y(t) = u and G = &(v(t) — vim). The Hamiltonian att; = 4.06s and then stays on the constraint boundary,
is augmented with the control equality constraint betweemefore following a symmetric exponential curve to zero.
[ts,t; —to] and is given byd = H + u(t)a(t). Here,u(t) is  However, this profile is not the same as that obtained from
the slack variable associated with the control constraidt a the unconstrained solution by setting velocity equalitp
H is given by Equation 8. wherever it exceeds. This unconstrained optimal velocity

We use the three necessary conditions given improfile obtained from Section 3 is also shown in Figure 6.
Equation 9 to obtain the optimal profile in the time interval The corresponding optimal contra(t ) is shown in Figure 7.
[0,t1] and [tf — t,tf]. On the constraint boundary, i.e., The acceleration is zero wher(t) is on the constraint
t € [t1,tr —to], the following necessary conditions must boundary, and follows exponential curves otherwise.

The final time can then be calculated by using the total
distance to travel and the distances traveled in the two
exponential curves.
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Optimal Velocity Profile not constrained to zero. Leg(i) andvs (i) be the initial and
final velocities for segmemt Thus,vp(1) = 0 andvs (N) = 0.
The velocitiesvy (i) andvs (i) can be non-zero for all other

15¢ intermediate segments. If we know thag{i) andvs (i) that

the optimal uses, we can find the entire velocity profile.

0.5¢

Velocity in m/s

5.1 Velocity profile subroutines

0 5 10 15 20 25 30 . . . S .

Time in secs While solving for the optimal profiles in Sections 3 and 4,
Fig. 6 Optimal Velocity {*(t)) profile obtained for maximum velocity W€ C(_)n3|dered only zero initial gnd final velocity bpundary
bound v, = 1m/s. The constrained velocity profile consists of conditions. Here, we extend this result for possibly non-
exponential acceleration and deceleration curves withcthestraint  zerovy andv; as initial and final velocities, and use this

boundary in the middle. This profile is not the same as thatiobtl  ¢y;0ngj0n as a subroutine for solving Problem 3. Note that
from unconstrained solution by setting velocity g wherever it

exceeds. in Problem 3, the first and the last segments have zero initial
and final velocities respectively, and hence the energy inode
Optimal Control (which ignores the terms; andcg because they cancel-out)
‘ ‘ ‘ ‘ remains valid (see proof in appendix).
0.5
For segments with no bound on the maximum velocity,

. by following a process similar to that described in Section 3

2 we get,

£

£ o

S

Q

[0}

g ~ (Vo—vi)(1—e M —kt;) + Dk(1— e Kr)

¢ (2—ktf) +e M (24+kts)—4
o5t  (vo—vs)(1— € +kt;) — Dk(1—€)
0 5 10 15 20 25 e (2—ktr) +e M (2+kts) -4
Time in secs
. . . : _ Sg=201(s1+ %) —C3— Vo,

Fig. 7 Optimal control for the case with bound on maximum velocity.
Note that the control is zero whenever the velocity is on thestraint g, — — ﬂ (22)
boundary (see Figure 6). k

5 Optimal Profile over Multiple Segments
The resulting profiles can be obtained by substituting the

In many applications, a high level task planner is used t@bove in Equations 10-12.

find the exact path to be followed by the robot. However, Similarly for segments with a maximum velocity bound
the velocity profile of the robot along this path is free to bevm' the optimal velocity profile is given by,

optimized. We use the solution from the preceding sections
to solve for the problem of finding the optimal velocity
profile when the given path consists Nf segments (see
Figure 13). We restrict our attention to the case when the

) . t (2y-t) _ kt
paths are composed of straight-line segments and constant S1 (ek e (1+€ 1)) Vo,
curvature turns with possibly different turning radii. For 0<t<ty
each segment, we are given maximum allowable velocity fog*(t) = { v, t<t<tf—ty
the robotvy(i) (see Equation 6) and the distance to travel ( K(tp—t—2t _
, \ ekt —t=2t) 4 gklti—t) _ (1 e2kt2) v
D(i),1<i<N. 2 + (1+e7%2) ) +vi,
The robot initially starts at and returns to rest, however ff—ta<t<ts.

the initial and final velocity for the intermediate segmests (23)
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where, The following theorem summarizes the results for all the
cases considered.
Vim — V. Vm—V . . , _
S = —M, S = —mif, Theorem 1 The optimal velocity profile that minimizes the
(et —1)2 (e —1)2 . . . :
5 energy consumption given by Equation 5 for a segment with
t = 1 <C4+ CaVin — 2C2VoVm distance D is given by,
k Cq— CzV2
" 1 — Equations 13 and 14 when there is no maximum velocity
2(C2Vm(Cq — C2VoVm) (Vm — Vo)) 2 _ Ca _ . .
) ) bound orif v, > , /| —, and initial and final velocities for
Cq — CoViy, C
1 Ca+ CoV2, — CapVi V the segment are both zero. The final timéstobtained
t,==In ( e from Equation 15.
k Ca— CoV4,

— Equations 22 and 14 when there is no maximum velocity

2(coVim(Cq — CoViVm) (Vim — Vf))% ) .

. C - ,
> (24) bound or if v, > , / —, and at least one of initial or final
C4 — CoV§, C2

velocities for the segment is non-zero. The final time t
is obtained from Equation 15.
— Equations 19 and 20 when the maximum velocity bound

C _— . .
Vi < C—4 and initial and final velocities are both
\V ¢

zero for the segment. The final timei$ obtained from

Figure 8 shows the optimal velocity profile obtained for

Optimal Velocity Profile

1t ] Equation 21.
/ — Equations 23 and 24 when the maximum velocity bound
C N . -
0.8 Vm < C—4, and initial or final velocity is non-zero
) 2
EOG for the segment. The final time is obtained from
> Equation 21. The initial and final velocity for the first
o . .
o
§ 04l and last segment respectively is zero.
0l We can use the separate cases of this theorem as
' subroutines to compute the optimal velocity profile for
multiple segments using dynamic programming. Note that

0 5 10 15 20 25 the last case is only valid when the initial and final velocity

Time i . ) .
me i sees of the first and the last segment is zero (i.e., the net effiect o
Fig. 8 Optimal velocity profile withvg = 0.3m/s, v, = 0.4m/s and cs andcg is zero).
vi = 0.1m/sfor traveling 30n.

traveling a distance of 36, with velocity boundvy, — -2 Dynamic Programming

0.4m/s and initial and final velocities,y, = 0.3m/s and
vi = 0.1m/s respectively. Note that the acceleration and
deceleration times are different in this case.

Let Vmax = maX{Vm(l),Vm(z), ce 7Vm(i)7 e ,Vm(N)} We
then discretize the velocity space at the segment boundary

. . k
into M + 1 equal partitions/}) = Mvmax,o <k<M. Let

0.5m, 0.2m/s Cc(v¥,i) be the cost to reach velociv;@‘f) at theTith segment
= boundary. LetE(vp,vm,Vt) be a function which gives the
energy consumption for an optimal velocity profile in a
segment starting withjyp and ending withvs, using the
6m, 0.8m/s 6m, 0.8m/s solution in Theorem 1. If eithevy > Vi OF Vf > Vi, then
the function returns the cost &§vg, Vim, Vi) = .
. We can then use the following recurrence for iffe

-Ulm, 0.4ms segment boundary:

Koy — i i) j (s
Fig. 9 Typical path for a robot composed of two straight line segismen C(V( >") - Og}?M (C(V( )’l -+ E(V( >’Vm(')’v( >)) )

and two turns of different radii. Segments have differentimam
allowable velocities, depending on their radii. 1<k<M.
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Since the robot initially starts from rest, we have theWe can then use Theorem 1 to compute velocity profiles for

following, each segmentusingvo(i) = v(i — 1) andvs (i) = v(i).
Using a procedure similar to that in Lemma 1 we can
c(v,0) = {0 k=0, show that at any segment boundary, if a velocity profile
o 1<k<M. decelerates further than ri(i), vim(i + 1)}, it consumes

The solution can be obtained by backtracking frommore energy than another profile that only decelerates up
C(v%,N) and finding optimal segment boundary velocity t0 Min{Vm(i),vm(i +1)}. It can also be shown that the
values. The optimal velocity profile can then be constructe§omplete velocity profile obtained by combining profiles

using these optimal boundary velocity values to findfor each segment is optimal, when each distab¢ is
individual segment profiles using Theorem 1. large. However, when the distances are small, this strategy

forces the velocity profile to achiewg (i) = v(i) leading
, , ) to higher energy consumption. The optimal solution on the

0.9 Optimal Velocity Profile other hand will reach a much lower value for(i). The
dynamic programming solution presented here covers this

o8 possibility by incorporating all boundary velocity values
0.7
© 0.6 _
E 05l 6 Energy Optimal Paths
20-4’ In this section, we study the problem of finding an energy
>

optimal path and a velocity profile along this path, given a
start and goal poses for a car-like robot (refer Problem 4).
Dubins [8] first showed that the minimutength curves
between two poses consists of at most three segments.
% 5 10 15 20 25 Each segment is either a left or a right turn of minimum
Time in secs turning radius or a straight line path, and no other type.
Fig. 10 Optimal velocity profile with different bounds for differen  The maximum feasible speed along a curve depends on the
segments. The given path cqnsists of 4 segments with bo“”q:'ilrning radius of the robot (Equation 6). In the absence
vm = {0.8,0.2,0.8,0.4}m/s and distance® = {6,0.5,6,1}m . .
of any constraints on the maximum speed, we know from
the discussion in Section 3 that the energy consumption is
Figure 10 shows the optimal velocity profile obtaineda monotonically increasing function of the length of the
for a path consisting of 4 segments. The velocity boundpaths. This suggests that for a car-like robot capable of
fqr these segments avm = {0.8, 0'2’,0'8’ 0.4}m/§ and.the traveling at more tha 4 at the minimum turning radius,
distancesD = {6,0.5,6,1}m respectively. By discretizing C2
velocity at the junction boundaries, we obtain the set othe minimum length paths are also the minimum energy
transition velocities using the recurrence given above as, Paths. The optimal profile for such paths will be those given

in Section 3.
vo(1) = vr(4) = 0m/s, vi(1) =vo(2) = 0.2m/s, In general, computing the energy optimal paths cannot
Vi(2) =Vvo(3) =0.2m/s,  v¢(3) = vo(4) = 0.4m/s. be decoupled from finding the velocity profiles. The

The profiles between the boundaries are computed usi
Theorem 1.

For building the tabl€, we consideM + 1 discretized
velocities at transition boundaries ™ segments. The

n?ructure of the minimum energy paths will depend on
the trade-off between turning radift), maximum feasible
speed as a function of turning radii(t), the length of the
path and the energy parameters. While finding a general

table has sizeO(MN) and can be constructed in time solution where the turning radius varies continuously in

O(M2N). This discretization can be avoided when a segmerfiMe seems difficult, we find an approximate solution by
is sufficiently long so that the robot can accelerate (Olrestrlctlng the robot to move along a sequence of constant
decelerate) to the bound for the next segment. In this cagg/rvature paths.

a greedy approach which chooses the transition velocity at 1° find such a path, we build a weighted graph (which
theit" segment boundary using the following rule suffices; W& t€m as theEnergy RoadmapG(V,E), where each
vertex represents a discretized pose and velocityVi.e.

{(x,y,0,v)}1. We add an edge between two verticgs=

i=0,

N . . . . 1 In this sectionx refers to theX-coordinate of the robot, and not the

v(i) = min{vm(i —1),vm())}, O0<i<N, parametric position of the robot along a path as used in theegiing
0, i=N. sections.
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(X, Vi, 6,vi) and v; = (Xj,yj,6;,vj) if (i) there exists a
(directed) circular arc (or straight line) frotix;,yi, ) to
(Xj,Yj, 6j), and (ii)v; andv; are both less than or equal to the
maximum feasible speed along this circular arc. The weight I
onthe edge from; to v is set to the energy for the minimum \
energy velocity profile along this circular arc with startlan
end speeds set 9 andv;j. The energy is computed using
the resultin Theorem 1. ~ (24,95, 05)
The minimum energy path from the start and goal vertex -7
can then be computed by any shortest path algorithi®.on Fig. 12 There exists only one circle passing through a posss, 6)

. L -1and a positior(x;,y;j). All other circular arcs (shown dashed) passing
e.g. A* search. The shortest (minimum energy) path WIIIthrough the same pair of points will not have a tangent atigrieng6;

be a sequence of poses and discretized velocities; the ent'gt(xhyi). Hence, in building the Energy Roadmap, instead of seagchin
robot path can be obtained by connecting the sequence ofer all pairs of posesd(|X|? - |©|?)), we search over pairs of poses

poses with circular arcs or straight line segments and th@nd positions@(X|?-|©])).
optimal profile along the path can be obtained by applying
Theorem 1 to the corresponding sequence of velocities.

(@i, yi,0;)

N

one circular arc or line from a given posr,yi,6) to a
position (xj,yj) as shown in Figure 12. Hence, we only
check each pose with every other position for a feasible
path (Lines 4-6 in Algorithm 1). Looking up a vertex from
a pose or position while adding the ed@efdvVertex in
Lines 12-13) can be done in constant time by maintaining a
map of pointers.

Paths from (0.0,0)

J 6.1 Implementation

4 5 6 0 1 2 3 4 5 6

@ (b)

0 1 2

We implemente@ithe algorithm in @+. We used the GNU
Fig. 11 In the Energy Roadmap we connect any two discretized poseScientific Library [10] to perform numerical integration

by a(circul:;r path, if it exists. (a) All possible circulartha starting  jn computing energy and for solving the transversality
from (0,0, 0). The minimum turning radius is set tonl A total of 2254 L . : - - P
paths exists fronf0, 0, 0) using side resolution of.@mand orientation condition given in Equation 15. To find the Dubins

resolution ofZ% . (b) Paths starting frorf0, 0, 0) reaching all discretized Paths, we used the Open Motion Planning Library [5].
vertices with(x, 3, 8). There exists a unique circular path starting from Our implementation makes the following optimizations to

a given pose reaching a givensition reduce the runtime and storage requirements:

— In general, the number of edges i can be
O(|X|?|@||V|?). For a fine discretization, the storage
can become prohibitively high. We reduce the storage
requirement toO(|X||@||V|?) by observing that the
paths between two poses are invariant to rotation and
translation in the plane. Hence, instead of computing
and storing edges between all possible pairs of vertices,
we initially create a lookup table consisting of outgoing
edges from(0,0,60,vp), for all 6 € © andvy € V to

all other vertices. While finding the shortest path using
A* search, each time a new vertex, séyy,0,v), is
discovered, we first transform all other vertices in the

In the Energy Roadmap, although the poses are
discretized, we allow connecting any two poses with a
circular arc (Figure 11). Note that we do not impose any
grid connectivity or fixed radius turns. Further, although w
discretize velocities at a pose, we use the optimal energy
profiles leveraging Theorem 1 to interpolate the velocity
between two vertices (as opposed to enforcing any fixed
profile).

The complete algorithmis presented in Algorithm 1. The
main subroutine§etMinEnergy andGetMinEnergyProfile
are applications of Theorem 1. The subroutiaePath finds

the directed circular arc or straight line path. The reshef t
subroutines are obvious from their names.
If |X|, |©], |V| are the number of discretized positions,

orientations and velocities respectively, then the Energy

Roadmap hasV| = |X|-|©]-|V| vertices. Checking for a

feasible path between every pair of vertices would require

relative coordinate frame centered @ty). We can
then extract its neighbors by looking up the relative
coordinates in the table. This approach trades the
running time of the search phase with the running time
for building the Energy Roadmap (Lines 4-18) and the
storage required for the Energy Roadmap.

O(IX[?|@[?|V|?) checks. Instead we can reduce the number 2 coge is available to download fromctp://rsn.cs.umn. edu/
of checks toO(|X|?|@|) by observing that there is exactly index.php/Downloads
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— To further speed up the A* search, we use a lower bound It must be noted that these observations are a function
on the energy as a heuristic function. For any verte>of the system parameters. For example, if the robot is
(%i,Yi, 6,vi), a lower bound on the energy to reach thecapable of moving at very high speeds at minimum turning
goal (%, ¥, &,v) can be computed a&% whered is  radius, then the minimum energy path will coincide with the
the Euclidean distance betwegeq,yi) and (%, t ). minimum length paths. Nevertheless, Algorithm 1 will find

) o the minimum energy path, subject to the discretization.
A discretization of 0lm, Zirad and 06m/s was used for

finding minimum energy trajectories. Energy parameters

C1,...,Cq4 Were set to 1Fmax = 0.05,m= 1 and minimum  Algorithm 1: Minimum Energy Trajectories

turning radius was set tonifor each instance. The graph, Input: s,t; Start and goal pose

thus created consisted of 6.4M vertices. The lookup table Data: X,0,V discretized positions, orientations, speeds
to store potential edges (as described above) used 10GB Output: {@(t),v(t)}: Steering angle and translational velocity

. . . rofiles.
memory. Compu_tmg the minimum energy path ty_pmally 1P {(l gx,ee@)} /% discretized poses */
took under 15mins on a 3.0GHz computer. To find the ; v« {(pePveV)} /% vertices %/
optimal velocity profile along the Dubins’ path a resolution 3 E<«0
of 0.02m/swas used for dynamic programming. /* There exists exactly one circle/line through
given pose & position */

4 forall the pe P do
5 forall the | € X do

. . . 6 (8,len rad) < GetPath (p,I)
6.2 Comparison with Dubins’ Paths 7 if 6 ¢ O then
8 Vm ¢ GetMaxVel (rad)
Figure 13 shows the energy-optimal paths and velocity © forall the vo € V AND \ < vy do
. . . : 10 forall the vi € V AND v < vy, do
profiles obtained using Algorithm 1 for four start and goal )
) . 11 E + GetMinEnergy (Ienvo, Vs, Vm)
poses. These four instances are representative of the trade, Vi < FindVertex (p, Vo)
off between the turning radius, maximum velocity and 13 Vj « FindVertex (I, 8,vf)
energy. Figure 13(a) shows an instance where the Dubins!4 E < EUEdge (vi,V},E)
path consisted of three consecutive circular segments of° ende”d

minimum turning radius. The maximum allowable speedsij
along turns of minimum radii using Equation 6 was g end
0.22m/s. Hence, the optimal velocity profile along the 19 eng
Dubins’ path (right column) was forced to move at a slower 20 s« Findvertex (s,0)
speed, for a longer time consequently paying a higher energy?! t < FindVertex (t,0)
. - 2 Path—Ax Search (V,E, s t)
cost. On the other hand, the optimal path consisted of 5§3 o(t) «GetSteering (Path)

. . ) . - g
straight line segment and turns with greater turning radii, »4 v(t) « GetMinEnergyProtile (Path)
allowing the robot to move at a higher velocity. The resgjtin 25 return {g(t),v(t)}
path, although longer than the Dubins’ path, takes a lesser
amount of time to travel and pays a lower energy cost.

Figure 13(b) shows an instance where the minimum
energy path doesiot contain a straight line segment,
whereas the Dubins’ path does. Both paths begin and end Calibration and Experiments
with circular segments of minimum turning radius. The
minimum energy path, however, spends lesser time on theo test the validity of our results, we performed experirsent
minimum turning radius segments and switches to segmentssing our custom robot. We first describe a simple procedure
with higher turning radius (consequently lower energy) into find the energy model (Equation 5) of the robot for a given
the middle. We can observe that one of the characteristidat surface.
of minimum energy paths is to avoid turns with minimum
turning radius. Figure 13(c) shows an instance where the
minimum energy path does not contain any segment of 1 Calibration
minimum turning radius.

We observed that as the length of the minimum radiudVe use a custom-built robot (see Figure 14) for experiments.
turns becomes smaller than length of the straight lineflwo DC motors with their output shafts coupled together
segment of the Dubins’ path, the energy overhead othrough a gearbox drive the robot. The robot has car-like
traveling at slower speeds decreases. Figure 13(d) shawvs osteering controlled by a servo motor through a fixed steering
such instance. rod (unlike Ackermann steering). We use separate batteries

end
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Energy-Optimal Path Energy-Optimal Velocity Profile Optimal Velocity Profile on Dubins Path
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- - - Dubins Path
Min. Energy Path

o 0.6 0.6 1
Sa 0.5F 0.5 1

g z
Y Eo04r E04f i

\ 2 2

\ S k<]

° S
! © 0.31 o 0.3 1

| S >

|
) 0.2t 0.2 4
K
0.1 0.1 ul
— - —e——————— —
(0.0,15,0) @215m T o : : : : : o : : : : :
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)

(a) Energy-Optimal trajectory39.4J,7.6m). Dubins’ path with energy-optimal velocity profil@l0.1J,6.9m). The Dubins’ path
consists of C-C-C segments, whereas the minimum energyf@atil consists of 1 straight line and 5 circular segments.

Energy-Optimal Path

- Energy-Optimal Velocity Profile Optimal Velocity Profile on Dubins Path
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(b) Energy-Optimal trajectory19.1J,3.7m). Dubins’ path with energy-optimal velocity profilg0.7J,3.6m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energyfqaitl consists of 4 circular segments.

Energy-Optimal Velocity Profile Optimal Velocity Profile on Dubins Path

Energy-Optimal Path

- - - Dubins Path
Min. Energy Path 0.8F

P
(0.0,1.0,0) 02F
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(c) Energy-Optimal trajectory17.4J,4.7m). Dubins’ path with energy-optimal velocity profilgl7.83,4.6m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energyfqaitl consists of 1 straight line initially and 3 circulagsgents.

Energy-Optimal Path

- Energy-Optimal Velocity Profile Optimal Velocity Profile on Dubins Path
- - - Dubins Path (45,450 1t 1
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(d) Energy-Optimal trajectory26.29J,6.55m). Dubins’ path with energy-optimal velocity profi(@6.35J,6.59m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energyf@ath consists of 1 straight line and 5 circular segments.

Fig. 13 The left column shows the energy-optimal paths found usilggpthm 1. The color profile along the path indicates theropt velocity
profile, also shown in the middle column. The dashed pathesittmimum length Dubins’ paths. The energy-optimal velppitofiles along the
Dubins’ paths (using the dynamic programming presenteeati®@ 5) are shown in the right column. Energy parametgrs ., c, were setto 1,
Fnax = 0.05,m= 1 and minimum turning radius was set tmfor each instance. A discretization afifn, £;rad and (6m/swas used for finding
minimum energy trajectories. Resolution 002m/swas used for dynamic programming.
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Calibration Calibration

Current vs. Velocity Voltage vs. Velocity
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Fig. 15 Figures obtained during calibration on the corridor swefdeft to right:(a) The robot initially accelerates from rest to various sebuiy
values. We compute the average current and voltage for ¢herrevhere the robot moves afe; (STEP 1).(b) Current consumption as a linear
function of the velocity, when the motor is not accelerat{8F EP 2).(c) Voltage applied to the motor as a linear function of the vigypevhen
the motor is not accelerating (STEP &)) Calibration procedure to determine the parameten the energy model. We accelerate the robot with
various set acceleration valuasg: while logging current and voltage values (STEPS 3 and 4).

phase. Using Equation 25, we can find the paramdigrs
by, bs andbs using least-squares linear fitting to the data
(see Figure 15(b and c)).

STEP 3: To find the remaining two termiss andbg in
the model, program the robot to drive from rest at various
set acceleration valueget to reach some velocity value (we
used 16m/sfor our system, see Figure 15(d)).

STEP 4: Compute the values obs and bg by
: g substitutingaset andbs, by, by andbs values obtained above
Fig. 14 Left: Custom-built robot used in our experimeniight: in Equation 25 ‘_”md taking the average of "’,1” the readings.
Attopilot voltage and current measurement circuit from r®pan STEP 5: Finally, calculate the required parameters
Electronics. C1,...,C4 in Equation 5 usingc; = bghbg, ¢, = bobs,

c3 = bybs + bybs, andcs = bby.

to drive the DC motors and power the rest of the electronics
on the robot. Table 1 Energy model parametersSI( unit§ obtained using the

Our method utilizes a simple current and voltagecalibration procedure.
measurement circuit (Figure 14) connected between the

output of the motor and the motor driver circuit. This Surface G C2 s c4

circuit measures the current flowing through and the voltag€orridor 17.75 1.16 10.46 4.70

across the motor. An optical encoder installed on one of th&oncrete .47 0.77 10.10 4.24
Grass 8.10 5.28 28.01 25.07

robot’'s wheels measuresiits linear velocity. In the catibra
procedure described next, we fix the steering of the robot so
that it drives in a straight line.

We can write Equations 2 and 3 as,

Using the above procedure, we calibrated our robot
on three surfaces: indoors on a corridor and outdoors on
i(t) = b1+ bov(t) + bsa(t), concrete and grass. The corridor surface was flat whereas
e(t) = by + bsv(t) + bea(t) (25) the two outdoor surfaces had uneven terrain, the grassy area

_ o . more so. Figure 15 shows plots for the complete calibration
where by,...,bg are linear combinations of the internal

parameters of the motors. The calibration procedure to et veocy S

obtain the energy parameters consists of the followingsstep ™ .. *
STEP 1: Drive the robot at a constant velocitys) * . - °

for some time interval (we used 40n our calibration /

experiments). Log the current and voltage across the motor. . :

Repeat for differenise; values ranging from the minimum to

the maximum achievable velocity for the robot. Figure 15(a) .

shows some of the actual profiles obtained during calibmatio o8 1 gz oieTie 1s @ T os 1 a2 e Tis 1s ¢

for Vst from O'5m/s to 2'5m/s' Fig. 16 Current and voltage as a function of velocity, for the grass
STEP 2: Compute the average current and voltage forsurface outdoors. Since the surface outdoors is not flat,ptbes

each of the above trials disregarding the initial accel@nat contain more noise than the corridor surface (Figure 15(69)&

o
N

Current in amps
o
S
o

Voltage in volts

=
S

©
=
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procedure with the corridor surface. Figure 16 shows tha@nd less time than the optimal respectively. We perform
current and voltage plots for the grass surface. The curretihese comparisons f@ = 20mandD = 45m.

consumption and voltage required for driving the robot are

higher for grass than for the corridor surface. Since the optimal profie Faster and sower profies

surfaces outdoors are uneven, the plots contain more noist ,, e
than those for corridor. The model parameters computed for / )
all surfaces are shown in Table 1.

»
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7.2 Experiments

0 5 15 0 5 20

10 10 15
Time in secs Time in secs

We cqnducted exp_erlments Onthe smooth-corrld(.)rsurface I'Igg. 18 Left: Optimal velocity profile executed by the robot for
experimentally validate the optimal velocity profiles faun traveling 20n in 18.4s while consuming 296 energy. The optimal
in Section 5 and compared with two other profiles. We firstprofile is shown as dashedright: Sub-optimal velocity profiles
computed the analytical solution for the velocity profile to executed by the robot for traveling @0at maximum set velocities of
travel the given distance. We then sampled this profile a‘}3m/sand 2an/s. The energy consumption for these profiles isBaad
: 19].

10Hz and stored the values in a look-up table.

Figure 18 shows the optimal, slower and faster velocity

] o profiles executed by the robot in the corridor. The optimal

' profile computed is also shown in Figure 18 as dashed.
Table 2 shows the comparison of the energy consumption
for all the trials conducted. As we can observe, the optimal
profile consumes lesser energy than the two sub-optimal
profiles. Also, the energy savings become more significant
as the distance traveled increases.

o
@

Vel in m/s
o
S

0.4
Table 2 Energy consumption during experiments. The numbers in
parentheses indicate the percentage of extra energy cptisamvith

0.2

respect tdgpt.
. ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 lsTime |2;'-| Secszs 30 35 20 D (m) Eopt(-]) ESIOW(J) Efast(J)
Fig. 17 Optimal velocity profile executed by the robot for mul- 20 296 303 (2%) 319 (78%)
tiple segments. The dashed curve shows the optimal profile-co 45 656 694 (8%) 696 (61%)

puted using the dynamic programming solution for segmernth w
D = {10,3,10}mand maximum velocity constraing, = 1,0.2,1m/s.

Figure 17 shows the optimal profile computed using thes Conclusion
dynamic programming solution presented in Section 5, for a
given path three segments with distan@es {10,3,10}m In this work, we studied the problem of computing
and maximum velocity constraints ag = {1,0.2,1}m/s trajectories for a car-like robot so as to minimize the eperg
The computed velocity profile is shown as a dashed curveeonsumed while traveling on a flat surface. We separately
The total energy consumed over the entire profile was/595 considered the problem of computing the energy optimal
The actual profile executed has small deviations arisingelocity profiles, and that of simultaneously computing the
due to noise and disturbances on the surface. In this worlenergy optimal paths and velocity profiles. We presented
we pre-compute the optimal trajectory for the robot. Aclosed form solutions for the velocity profiles for two
useful extension to this could be to design an optimatases: no constraints on the robot’s speed, and a single
velocity feedback controller which minimizes the energyupper-bound on the speed. For the general problem
consumption. of computing both paths and trajectories, a discretized

We compare the energy consumption of our optimabgraph search algorithm that leverages our closed form
profile with two commonly-used trapezoidal profiles. We solution for optimal velocity profiles was presented. Using
chose the maximum speeds for these profilesrasshnd  an implementation of this algorithm, we investigated
2m/s, so that the robot covers the same distance taking mottee structure exhibited by minimum energy paths and
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highlighted instances when these paths differ from the
minimum length (Dubins’) paths. The closed-form velocity
profiles and the obstacle-free trajectories can be used ag
subroutines by sampling-based planners for computing
trajectories in the presence of obstacles. 17.

In addition, we presented a calibration procedure for
obtaining robot’s internal parameters related to energﬁg'
consumption. We demonstrated the utility of the calibmatio
procedure and the algorithms presented in the paper witto.
experiments performed on a custom-built robot.
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When there is no bound on the maximum velocity, the Hamiétoni
for this problem can be obtained using Equations 26 and 27 as,

H(X(t),a(t),A(t),t) = cr@?(t) + coV2(t) 4 cav(t)
+Ca+Ar(t)V(t) +Az(t)a(t)

where the acceleratioa(t) is the control.
The three necessary conditions fa(t) to optimize the
Hamiltonian [17] for all timet € [0,t¢] are given as,

@1

- OH -« JoH oH
X'(t)= 35 A =5, 0="5_ (32)
By substituting we get,
X(t) = v(t),
v(t) =a(t),
Al(t) = 07
Aa(t) = 2cV(t) + C3 + Ag,
Ao(t) = —2ca(t)
Malt) = —2c1¥(t)
Using the last two equations, we can write,
—2¢1Vi(t) = 2coVv(t) + C3 + A,
2cV(t) + 2cov(t) + c3+ A1 = 0.
We can solve for this second order differential equationiétdy
V() = s+ se <C3+‘°’3> 33)
2c,

wherek = | /E—f ands; — s4 are constants anth = sz.

Applying the state transition equations, we can get thenugti
control and states given as,

a'(t) = ks —kse ™™ (34)
ey St€ s et
X =" (gt (35)

We can solve fos; — s, in terms of the final timé; by substituting
the boundary conditions given in Equations 28 and 29vfgt) and
X*(t). We obtain,

o Dk
Tkt (kt; —2)+ 2
9 =se",
S3=2C1(s81 +2) — C3,
54:7¥' (36)

By substituting in Equations 34-35 we obtain,
vy (€ elkty —t) — elkt)
a=0 (cl> (ktf + & (ktg —2)+2> '
\F (L+ef — (V1)
D,/— )
c1 \ Kkt +€¥ (ktf —2)+2
(ti—t) _ (gt t
X (t) = D (et — &) — (e — 1) + kt(e +1)
kty +é‘tf (ktf —2)+2

Vi (t)

) : @7

Since the final time is free, it can be solved for using the taoitl
boundary condition (known as the transversality cond)tgimen by,

H(X"(te),a"(ts), A" (ts),tr) = 0. (38)

17
Substituting Equations 34-35 and 36 above results in,
C2 t Csq try
(DC—+2)(1—ekf)+ katf(1+é<f)fo, (39)
1 1

which is an equation in single variabte and can be solved using
existing solvers. (We used MATLAB'solve function). Alternatively,
if the final time is fixed, we can directly substitute this givealue in
Equation 37 to find/* (t).

B Proof for Lemma 1

Proof Consider any velocity profile(t) shown in Figure 19. LeD

andE be the total distance covered and energy consume byThis

profile crosse % between timegts, tp] and|ts,t4]. Let di2 anddsy
2

be the distances covered bit) in these sections. The total energy
consumption of/(t) is given by,
E = Eo1+ E12+ B3+ B34+ Egs, (40)

whereE;; refers to the energy consumption to cover the distakice

2.1

1.5r

1.2

0.9r

Velocity

0.6

0.3

o} b 5
Time
Fig. 19 Sections of this velocity profile crossing.(= , /?) between
2

[t1,t2] and [ts,t4] can be replaced by constant velocity)(sections
resulting in a velocity profile that consumes lesser enengyavel the
same distance.

We construct another velocity profile(t) by replacing the
. . C. .
sectiongty, to] and|ts,t4] by constant velocity, = 0—4 sections for
\V c2

. d d . . .
time % and % respectively. The total distance traveled\bit) is

C C
D, same aw(t). The total energy consumption @ft) is given by,

E' = Eo1+Ef2+ Ea3+Egy + Eus, (41)
sinceV (t) is the same asg(t) everywhere except € [t,to] andt €
[ta, ta].

We now show thaE’ < E by proving bothE;, < E;» andE}, <
Ez4. This result can then be generalized to velocity profileshaity
number of crossing sections in either directions.

First, consider the energy consumptig for v(t),

Eip = /t K [claz(t) + C2V2(t) + 04] dt+ czdio. (42)
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Now, let us consideEj,. The time taken in this case would be C.1 0<t <t;
d
te= % The energy consumption is,

¢ Using the necessary conditidn= 72—;' we get,

- te
Ej,= / [claz(t) +VA(t) 4 Cav(t) + ¢4 | dt,
1

dio h=0,
= CoVed12 + C3di2+ C4V—C. (43) o M=s3
The distancel;, can also be written as, and
-ty ’
dip = / v(t)dt]. 44
12 ll[()} (44) L om o1
Substituting Equation 44 in 43, we obtain, _2 ox’
fty 1o V(t) )\2 = — [ZCZV(t) +C3+ 93} . (52)
El, = / VeV(t)dt + cadlip+ Ca / “at, (45)
51 t1 c
JH
Using Equations 42 and 45, we can write, Applying the third necessary condition=0—— 9a Ve get,
t2
_EL 2
Eio—Epp Cl./tl a“(t)dt 0=2ca(t) +Az(t),
c [t C S A(t) = —2qa(t).
2 [ el - vi0] | 2 - vty
Ve Jty C2
E—El,>0, Differentiating the above equation we get,

. C. . 1) — v
sincev(t) <ve <, / C—4. For the section betweegandts, we can show ~ A2(t) = —2c1V(t).
2

thatEzs — B, > 0. From Equation 52 we can write,
In general we can replace any number of such sections cgossin
/C— to yield another velocity profile with lower energy covering 2c1v(t) = 2cv(t) +C3+ S3,
’ . . Ca . ) . \','(t)_%\,(t)_c?""sﬁ —
the same distance moving vg Hence, once the velocity profile - 1 2
2

hits C—4, there is no reason to deviate from this value except at thelhe solution for the above differential equation is given as
2

boundary (initial and final conditions). O

Vi) = s fse k- B8
2c,
C Proof: Constrained Solution a’(t) = sike —spke ™
Sﬂ.ek[ S —kt C3+$S3
= =gt = -2 TS ,
We begin_by writing the velocity constraint in the form of tsta xX(®) k k € 2c; 5,
inequalityS= (v(t) — vm) < 0. The state inequalit@is converted into M) =ss,
a control equality and interior point constraint by diffetiating Sonce AL = —2cia (t
leading to, 2(t) = —2ca’ ().
SY =v(t) =u.
V(t1) = Vim (46) Using initial conditions«(0) = 0 andv(0) = vo, we get,
Along the unconstrained arc, the state transition is g@cioy
Equation 26. On the constrained arc, the state transitigivés by, Si=— S1—-%
K
v X(t):| |:Vm c3+
X(t)= |2 = 47 3 TS _
v [V(t) 0 (47) g CSuTRTVW
The Hamiltonian is augmented with the control equality ¢xaist )
in [t1,t; —to] and is given by, Putting these together we get,
Jq 2
H = c1@?(t) + VP (t) + Cav(t) + ¢4 (t) — st se M (5145 —Vo),
wherep is the slack variable associated with the control condtré&in S okt SI—-%
the interval0,t;] and[t —t,,t¢], the Hamiltonian is given by, X (t) = ek K& T Emts-vot— =
H = c1a?(t) + coV2(t) + cav(t) Al(t)=2C151+SQ*V07C3,
+Ca+ AL(t)V(E) + Ax(t)a(t) 49) A2(t)=-—2ca'(t),

The interior point constraint is given by,

G=&(t)(V(t) —Vm)- (50)  wheres; ands, are two constants left to be evaluated.
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C2t; —tr <t <ts

In this section, the system is governed by the same statdieq s
in the interval 0<t <t;. Hence, we get a similar form for the optimal
state and control given by,

_ o okt gkt t okt C3 1+ S5
t) =sie Mt 1 g dle o
g_]_ke ks ekt dzké(tf 7kt

g.l. okt gkt _ g2e;<tf —kt C3+5;

X(0) = e

AL(t) = 537
A (t) = —2ca° (1),

S tts,

wheres, ...s) are the new constants to be solved for. Using the final

condition,x(tt ) = D, we get
S8 Gt
D=~k o Ut
_ S8 G+Ss
$=P-[y 20

Using the second final conditiom(ts) = vi we get,

C3+%

=5 +5- :
85 = 201( §1+§z—Vf)—

The equations can then be written as,

Vi(t) =se K1Y 4 et (s + 55— vy),
a*(t):dlke k(ts —t) gzkektf t

AL (t) = 2c1(sy +5 —vr) — €3,

Az (t) = —2cia(t).

C.3 Corner conditions

19
where,
~ (vm—Vvo)
Sl - (é(tl _ 1)2 9
_ Vm — Vs
52 - (é(tZ _ 1)23

Using the transversality conditioH (tf) = 0, we can determine the
timest; andt, as,

1 in (Gt CoVZ, — 2CoVgVim
1= k Cq— sz%

2(CaVin(C4 — CaVoVim) (Vi — Vo)) 2
C4— CoV2, '
. (53)
2 >

and the final time can then be calculated by using the tottdmiie to
travel and the distances traveled in the two exponentiaksuit is easy
to see that if/p or v¢ is equal tovy, thent; = 0 ort, = 0 respectively.

. 1In C4 + CoVZ, — CapVi Vi
2= k C4702V2m

2(coVim(Ca — C2ViVim) (Vm — V1))
Cq— CV3,

D Proof for Lemma 2

Proof Consider any velocity profile consisting of & -U-C
sequence covering distanbeWe can replace thiS — U — C sequence
with a singleC section, so that the resulting velocity profile covers the
same distance and consumes energy less than the origifiéé.pro

Let v(t) be any velocity profile that contains & - U—-C
sequence. That isy(t) =vm(t) for top <t <t; andt, <t <tz and

We can now use the corner conditions to determine the unknowm(t) < vp, betweert; <t <t,. The energy consumption of this profile

constantsy, s,s;,S,. The corner conditions state thaf(t —to) ") =
A((tr —t2)7) andv((tr —t2)") = v((ts —t2)7) andp((tr —t2)7) =0,

H(t) =H(t),
alty —t2) =0,
§2 _ §le_2kt2.

Using the other corner conditior(t; —t2) ™) = v((tf —t2)~) we have,
V(ts —t2) = Vm,
(S+ e —vi) =i,
d.l. == (efktz _ 1)2‘
Using similar arguments at the other corhert; we get the final form
for the optimal velocity profile as,

St (ek‘ et (14 ez'“l)) + Vo,
0<t<ty
Vm, h<t<ti—t2
S (e*k(‘f*t*aZ) +et-H_ (14 e2kt2)> + Vi,
tr —tr <t <ts.

—kto —ktp
se? +se
Vm — V¢

Vi(t) =

for traveling a distance® = dp1 + di2+ do3 is E = Egy + E12+ Eo3,
whereE;; is the energy spent in travelirg; for v(t). We construct
another velocity profile that is identical t) in [to, t1] and|ty,t3] but
covers the sectiod;, at v(t) = viy. The energy consumption for this
new profile differs only in thel;, section.

By following a process similar to that in Lemma 1, we can show
thatE/, < E1» leading toE’ < E. Hence, anyC — U — C sequence can
be replaced by a singlé segment to reduce the energy consumption.
Hence, the optimal velocity profile will never consist offa- U —C
sequence. 0

E Proof of Energy Model for Non-zero Initial and Final
Velocities

Lemma 3 Let T be a path with N segments starting and returning
to rest, i.e., y(1) = 0 and w (N) = 0. Let Ey4(i) and E(i) be the
minimum energy obtained for th&@ segment using Equations 5 and 4
respectively. Thely; E14(i) = 5 Eas(i).
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Proof First, consider the energy obtained using Equation 4. Fchn ea
segment, we have

Exoli) = /0 N [exa(t) + e (t) + cav(t)
+ st csalt) + cev(t)a(t)] dt
= /0 N [claz(t) + V() + Cav(t) + c4] dt
+ A ¥ [esatt) + covivyalt) |t
= E13(i) +E2(0).
Now we have,
Z Eae(i) = Z SHORS Z Efe(i)
= ZE%Q(i)
=3 Euli)

The second statement follows singgE3S(i) = 0 when vo(0) =
vi(N) = 0 as given by [1]. That is, the net effect of andcs is zero
when the robot starts and returns to rest. O



