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Abstract When a battery-powered robot needs to operate
for a long period of time, optimizing its energy consumption
becomes critical. Driving motors are a major source of
power consumption for mobile robots. In this paper, we
study the problem of finding optimal paths and velocity
profiles for car-like robots so as to minimize the energy
consumed during motion.

We start with an established model for energy consump-
tion of DC motors. We first study the problem of finding the
energy optimal velocity profiles, given a path for the robot.
We present closed form solutions for the unconstrained case
and for the case where there is a bound on maximum veloc-
ity. We then study a general problem of finding an energy
optimal path along with a velocity profile, given a starting
and goal position and orientation for the robot. Along the
path, the instantaneous velocity of the robot may be bounded
as a function of its turning radius, which in turn affects the
energy consumption. Unlike minimum length paths, mini-
mum energy paths may contain circular segments of varying
radii. We show how to efficiently construct a graph which
generalizes Dubins’ paths by including segments with ar-
bitrary radii. Our algorithm uses the closed-form solution
for the optimal velocity profiles as a subroutine to find the
minimum energy trajectories, up to a fine discretization. We
investigate the structure of energy-optimal paths and high-
light instances where these paths deviate from the minimum
length Dubins’ curves. In addition, we present a calibration
method to find energy model parameters. Finally, we present
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1 Introduction

Energy optimization is a fundamental requirement to
achieve long term autonomous deployments of mobile
robots. One of the main bottlenecks for robots is the limited
lifetime of on-board batteries. To extend the system lifetime,
it is critical to optimize the energy consumption of the
robot, in addition to harvesting additional energy. Motion
is a major source of energy consumption. In this work, we
study the problem of minimizing the energy consumption by
optimizing the motion of the robots.

In particular, we focus on car-like robots powered by
Direct Current (DC) motors. It is well-known that the energy
consumption of a DC motor depends on its angular speed
and acceleration [1]. The angular speed and acceleration
of the driving DC motor in turn controls the translational
velocity and acceleration of a car-like robot. We study the
problem of computing a path and the corresponding velocity
profile of a robot so that it consumes a minimum amount of
energy to travel.

The classical problem of optimizing the path and
velocity profiles for mobile robots while satisfying velocity
and/or acceleration constraints is known as kinodynamic
planning [7]. The pioneering work for finding minimum
length paths for a forward-only car-like robot was done
by Dubins [8]. Reed and Shepps [21] extended this work
for a car that can go forward and backward. Balkcom and
Mason [2] used an optimal control formulation to derive the
time optimal trajectories for bounded velocity differential
drives. Recently, Chitsaz et al. [4] used similar techniques
to give the complete characterization for minimum wheel
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rotation paths for differential drive robots. As we will show,
the minimum length or time paths are not the same as the
minimum energy paths. Figure 1 shows one such instance
where the energy optimal path deviates from the minimum
length (Dubins’) paths.

Energy−Optimal Path

(0.0,1.5,0) (1.2,1.5,π)

 

 

Dubins Path
Min. Energy Path

Fig. 1 The minimum length path consists of 3 circular segments,
whereas the minimum energy path consists of a straight line segment
and 5 circular segments of varying radii. The optimal velocity profile
along the path is given by the color in the heat map along the path. The
straight line and circular segments with higher turning radius allow
the robot to move at a higher speed and thus for a lesser time leading
to lower energy consumption (despite being longer). We explore this
trade-off between velocity, turning radius, path length and energy in
this paper.

Existing literature of finding minimum energy paths
for robots includes the work of Sun and Reif [22] who
consider the problem of computing the optimal path for
robots traversing a terrain. Under the assumption that the
friction coefficients are known across the terrain, they show
how to compute a path that requires minimum energy to
overcome frictional forces. This work generates the path but
does not yield an optimal velocity and acceleration profile.
Furthermore, the paths found are piecewise linear which
cannot be directly applied for car-like robots.

With recent advancements in hybrid and electric
vehicles technology, power management and optimization
has received considerable interest in the automotive sector
(see e.g. [12]). Research studies in this area target
power optimization based on the users’ input and driving
profiles. However, there has been little work on finding
energy efficient trajectories for vehicles that navigate
autonomously. Energy optimal trajectory planning has also
been studied for robotic manipulators. Gregory et al. [11]
studied the problem of finding energy-optimal control inputs
for a manipulator with two revolute joints to follow a
prescribed path. Wigstrom et al. [25] studied the problem
of scheduling jobs for possibly multiple industrial robots,
where each job requires the robot to optimize its control
profile with respect to energy and follow a prescribed path.

Our work differs from this literature in that we use the
kinematic and energy model for a car-like robot. In addition,
we focus on simultaneously computing the energy optimal
path and velocity profile along this path.

In order to compute velocity profiles, the power
consumption needs to be modeled. Mei et al. [20] model
the power consumption as a sixth-degree polynomial of
the robot’s speed using experimentally collected data.
However, their model does not incorporate acceleration.
More importantly, they use this model to compare velocity
profiles but do not address the problem of computing an
optimal profile.

Kim and Kim [16] find the optimal velocity profile for
a robot moving on a straight line, when the total time to
travel is fixed. However, this solution does not incorporate
any bound on maximum velocity of the robot. In [15],
they propose a rotational trajectory planner that minimizes
the energy consumption. They do not present a systematic
method to combine the solutions for translational and
rotational trajectories. Thus, it is not clear if this approach
yields an optimal solution. Wang et al. [24] studied the
problem of finding a minimum energy trapezoidal velocity
profile. As we will show shortly, trapezoidal profile itself
is not optimal in terms of total energy consumption. In
addition, they do not consider any upper bound on the
velocity of the robot. Further, their technique is only
applicable for turn-in-place-move-forward type of motion
for differential drives, and is not experimentally verified.

Broderick [3] et al. studied the problem of computing
energy-efficient velocity profiles for a tracked robot. The
path of the robot was computed using a boustrophedon cov-
erage pattern and decomposed into straight-line segments
and turns. The goal was to compute the velocity profile for
the left and right tracked wheels along each segment. The
cost function for each segment penalized a linear combina-
tion of the control inputs, efficiency of the motors, and the
fraction of area not covered by the trajectories before the
start of the current segment. Based on this cost-function, the
paper presented trade-offs between the control inputs and
the area covered by the robots.

In this paper, we study the problem of computing paths
and velocity profiles for forward-only car-like robot that
minimizes the energy consumption in a flat, obstacle-free
environment. First, we focus on the case of finding the
energy optimal velocity profile when the path is given.
Depending on the application, a high-level planner can
specify the exact path to be followed by the robot. However,
often the velocity along the path is free to be arbitrarily
set. For such situations, we present a closed form solution
for the velocity and acceleration profile that minimizes the
energy consumption, based on our model. Next, we consider
the problem of computing the minimum energy path itself,
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given a start and goal position and orientation (pose) for the
robot.

Dubins [8] first showed that the minimum length paths
between two poses for car-like robots consists of at most
three segments. Furthermore, each segment is one of three
types: straight line, left turn with minimum turning radius,
and right turn with minimum turning radius. As we discuss
in detail in this paper, for minimum energy paths there is
a trade-off between the length of the paths, turning radius,
frictional forces, velocity and acceleration of the robot.
Unlike minimum length paths, a minimum energy path may
contain segments with varying turning radius (Figure 1).
To accommodate this, we present a graph (termedEnergy
Roadmap) which generalizes the notion of Dubins’ paths
by including turns with arbitrary radii on a discrete set of
poses. The Energy Roadmap also incorporates the closed-
form solution for optimal velocity profiles. We show how
to build this structure efficiently, and present details of
an implementation. Finally, we investigate the structure of
minimum energy paths found using our algorithm, and
highlight instances when these paths deviate from the
Dubins’ paths.

The rest of the paper is organized as follows: The energy
model and the formal problem statement are presented in
Section 2. We derive the optimal velocity profiles with and
without a maximum velocity bound for a path with single
segment in Sections 3 and 4 respectively and for multiple
segments in Section 5. The application of these results
to simultaneously compute the minimum energy path and
velocity profiles is presented in Section 6. Experiments on
our custom-robot are presented in Section 7 along with a
calibration procedure for estimating the parameters of the
energy model in Section 7.1. We conclude with a discussion
on the utility of our results in Section 8.

2 Problem Formulation

First consider the problem of computing the optimal velocity
profile when given a pathτ on which the robot will
move. The instantaneous position of the robot alongτ is
represented by a single variable of timex(t). The linear
velocity and acceleration of the robot along this path are
represented byv(t) and a(t) respectively. We define the
state of the robot byX(t) = [x(t),v(t)]T . The state transition
equation can be written as,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

v(t)
a(t)

]

(1)

wherea(t) is the control input.
We first describe the energy consumption model for the

robot, before formally stating the problem.

2.1 Energy Model

Consider a robot with car-like steering, with forward,
translational velocity provided by a DC motor. We use the
model described in [1] for energy consumption in a brushed
DC motor. This detailed model takes into account the energy
dissipated in the resistive winding, the energy required to
overcome internal and load friction and the mechanical
power delivered to the output shaft. The instantaneous
currenti(t) in the motors is given by,

i(t) =
1

KT

[

TF +TL +D f ω(t)+ (JM + JL)
dω(t)

dt

]

(2)

and the voltagee(t) across the motor is given by,

e(t) = i(t)R+KEω(t) (3)

whereω(t) is the angular velocity of the motor,KE andKT

are back-electromotive force and torque constants,TF and
TL are internal and load frictional torques,D f is the internal
damping, andJM and JL are motor and load moments of
inertia.

Since linear velocity of the robot and angular velocity
of the motor for a car-like robot are proportional to each
other, we can rewrite Equations 2 and 3 to yield the energy
consumption for traveling fromt = 0 to t = t f as,

E =

∫

0

t f [

e(t)i(t)
]

dt.

=
∫

0

t f [

c1a2(t)+ c2v
2(t)+ c3v(t)

+ c4+ c5a(t)+ c6v(t)a(t)
]

dt. (4)

where constantsc1, . . . ,c6 are combinations of the motor
parameters, andv(t) and a(t) are the linear velocity and
acceleration of the robot obtained fromω(t) and the radius
of the wheel. When the initial and final velocity values
are the same forτ, the net contribution by the terms
corresponding toc5 andc6 is zero and can be ignored [1].
Hence, we can rewrite the energy model as,

E =

∫

0

t f [

c1a2(t)+ c2v
2(t)+ c3v(t)+ c4

]

dt. (5)

The constantsc1, . . . ,c4 depend on the motor parameters
which in turn depend on the robot design and the surface
on which the robot is moving. These parameters can
be obtained using the calibration procedure presented in
Section 7.1.

The robot’s wheels may slip when it is making a
sharp turn at a high speed. The maximum speed with
which the robot can move alongτ is a function of the
instantaneous turning radius, the inertia of the robot and the
frictional forces with the surface. We assume the maximum
centrifugal force without slipping can be specified by a
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parameterFmax. Thus the maximum safe translational speed
without slipping will be,

vm(t) =

√

Fmaxr(t)
m

, (6)

wherer(t) is turning radius andm is the mass of the robot.
Any other function of the formvm(t) = f (r(t)) can be easily
incorporated in our algorithm.

2.2 Problem Statement

Let D be the total length ofτ. The energy consumption for
a velocity profilev(t) traversingτ is given by Equation 5.
The final timet f can be fixed or kept free. The robot starts
from and returns to rest overτ. This gives us the following
boundary conditions,

v(0) = 0, v(t f ) = 0, x(0) = 0, x(t f ) = D (7)

We study four problems of increasing generality. For the
first three problems, the objective is to find a velocity profile
v(t) to minimizeE, subject to the constraints given below:

Problem 1 τ consists of a single segment. There is no
bound on the maximum velocity of the robot, i.e.,v(t) ≥
0 for 0≤ t ≤ t f . Find the optimal velocity profilev∗(t)
minimizing Equation 5 subject to state transition and
boundary constraints given by Equations 1 & 7.

Problem 2 τ consists of a single segment. The maximum
velocity of the robot overτ is bounded by constant
vm, i.e., 0≤ v(t)≤ vm for 0≤ t ≤ t f . Find the optimal
velocity profilev∗(t) minimizing Equation 5 subject to state
transition and boundary constraints given by Equations 1 &
7.

Problem 3 τ consists ofN segments composed of straight
lines and curves. There is a separate velocity bound for
each segmenti given by vm(i). vm(i) is constant over
the ith segment. LetD(i) be the distance to travel for
each 1≤ i ≤ N. Find the optimal velocity profilev∗(t)
minimizing Equation 5 subject to state transition and
boundary constraints given by Equations 1 & 7.

Finally, we consider the problem of computing the path
τ itself. τ is specified by the steering control inputφ(t) and
the translational velocityv(t). The robot starts at and returns
to rest. We do not consider the cost of steering, and assume
for simplicity that the robot can instantaneously switch
the steering input. There are existing techniques [9, 18] to
compute continuous trajectories for car-like robots where
the rate of change of the steering input is bounded. The
physical interaction between the surface and the steering
wheel has also been extensively studied [6]. Since our

algorithm first computes a graph (as presented in Section 6),
smoothness constraints and the steering cost can be included
while searching for the optimal solution in the graph. We
assume that there are no obstacles in the environment. Many
sampling-based planning algorithms that consider obstacles
often require a subroutine that computes the optimal cost
and path between two poses in an obstacle-free environment
(see e.g. [14, 19]). Hence, we focus on the fundamental
case of finding energy-optimal paths without considering
obstacles, which can be used as subroutines for the general
case.

Problem 4 Given start and goal poses, compute a pathτ
and a velocity profile along this path for a car-like robot to
minimize Equation 5. The velocity at all times must obey
the constraint given by Equation 6. The robot starts at and
returns to rest.

The solutions for Problems 1, 2, 3 & 4 are presented
in Sections 3, 4, 5 & 6 respectively. Problems 1 & 2 form
special cases of the last two problems and provide insight
into the structure of general optimal velocity profiles. We
use the generalized solutions of the first two problems, with
non-zero boundary conditions, as subroutines for solving
Problems 3 & 4.

3 Optimal Velocity Profile without Bounds

In this section, we present the solution to Problem 1, when
the pathτ consists of a single section with no bound on the
maximum velocity of the robot. We first state the necessary
conditions and present the closed form solution for the
optimal velocity profile. Then, we discuss and provide
insights for the structure of the optimal profile. Finally,
we compare the optimal profile with the commonly-used
trapezoidal velocity profile.

3.1 Solution to Problem 1

When there is no bound on the maximum velocity, the
Hamiltonian [17] for this problem can be obtained as,

H(X(t),a(t),λ(t), t) = c1a2(t)+ c2v
2(t)+ c3v(t)

+ c4+λ1(t)v(t)+λ2(t)a(t) (8)

where λ1(t) and λ2(t) are the Lagrange multipliers and
accelerationa(t) is the control.

The three necessary conditions fora∗(t) to optimize the
Hamiltonian for all timet ∈ [0, t f ] are given as,

Ẋ∗(t) =
∂H
∂λ

, λ̇ ∗(t) =−
∂H
∂X

, 0=
∂H
∂a

(9)
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Applying these necessary conditions, we can solve
the resulting partial differential equations for the optimal
control and states to get,

a∗(t) = ks1ekt− ks2e−kt (10)

v∗(t) = s1ekt + s2e−kt−

(

c3+ s3

2c1

)

(11)

x∗(t) =
s1ekt

k
−

s2e−kt

k
−

(

c3+ s3

2c1

)

t + s4. (12)

wherek=
√

c2

c1
ands1, . . . ,s4 are constants.

We can solve fors1, . . . ,s4 in terms of the final timet f

by substituting the boundary conditions given in Equation 7
for v∗(t) andx∗(t). We obtain,

s1 =−
Dk

ktf +ektf (ktf −2)+2
,

s2 = s1ektf , s3 = 2c1(s1+ s2)− c3

s4 =−
s1− s2

k
. (13)

By substituting in Equations 10-12 we obtain,

a∗(t) = D

(

c2

c1

)

(

ek(t f−t)−ekt

ktf +ektf (ktf −2)+2

)

,

v∗(t) = D

√

c2

c1

(

(1+ektf − (ek(t f−t)+ekt))

ktf +ektf (ktf −2)+2

)

,

x∗(t) = D

(

(ek(t f−t)−ekt)− (ektf −1)+ kt(ektf +1)

ktf +ektf (ktf −2)+2

)

.

(14)

Since the final time is free, it can be solved for using the
additional boundary condition (known as the transversality
condition) given by,

H(X∗(t f ),a
∗(t f ),λ ∗(t f ), t f ) = 0. (15)

Substituting Equations 10-12 and 13 above results in,

(D
c2

c1
+2)(1−ektf )+

√

c4

c1
ktf (1+ektf ) = 0, (16)

which is an equation in a single variablet f (all other terms
are constant) and can be solved using any existing solver
for transcendental equations. (We used MATLAB’sfzero
function). Alternatively, if the final time is fixed, we can
directly substitute this given value in Equation 14 to find
v∗(t).

Figure 2 shows the optimal velocity profile obtained for
traveling a distance of 50m using Equation 14. It can be
observed that the profile consists of symmetric acceleration
and deceleration curves with an almost-constant velocity
region in the middle. From Equations 14 and 16, we can
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Fig. 2 The optimal velocity profilev∗(t) for a distanceD = 50m
usingc1, . . . ,c4 obtained during calibration in Section 7.1. The optimal
profile consists of symmetric exponential curves, reachinga maximum
velocity att = t f /2.
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Fig. 3 Optimal Control a∗(t) obtained for traveling a distance of
D= 50mcorresponding to the optimal velocity profile shown in Figure
2.

show that the peak velocity is reached att = t f /2 and is

given by, v∗
( t f

2

)

=

√

c4

c2

(

e
k
2 t f −1

)

(

e
k
2 t f +1

) . The corresponding

optimal control profilea∗(t) is shown in Figure 3. The
acceleration profile is a smooth exponentially decreasing
function. The acceleration is almost zero in the middle
region (exactly zero att = t f /2).

3.2 Structure of the Optimal Profile

The optimal velocity profile shows similar structure when
the distance to travelD varies. Figure 4 shows the optimal
velocity profiles for traveling four different distances. The
optimal profile reaches the same peak velocity and does not
go faster even if the distance to travel increases.



6 Pratap Tokekar et al.

0 10 20 30 40 50
0

0.5

1

1.5

2

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal Velocity Profile

Fig. 4 Optimal Velocityv∗(t) profiles obtained for traveling distances
D = 5,35,70,100m follow a similar structure.

From the cost function (Equation 5), we see that both
higher velocities (through termsc2 andc3) and longer times
(throughc4) are penalized by higher energy cost. Consider
a time-optimal trajectory where the solution would be to
move as fast as possible, subject to maximum acceleration
and deceleration. Such a trajectory would pay a much higher
instantaenous cost (through termsc1,c2,c3) but integrated
over a shorter time. The energy-optimal trajectory, on the
other hand, achieves the optimal energy trade-off between
moving faster (and consequently for a lesser time) and
moving slower (and for longer times). In constrast to a
time-optimal trajectory, the solution for the energy-optimal

trajectory does not exceed the peak velocity of
√

c4

c2
. The

following lemma sheds light on this underlying structure for
the optimal velocity profiles.

Lemma 1 Consider an arbitrary velocity profile v(t) travel-
ing a distance D. Let the total energy consumption of v(t) be

E. If the given profile crosses
√

c4

c2
at times ti and ti+1, we

can replace this section of v(t), ti ≤ t ≤ ti+1 by a constant

velocity section of vc =
√

c4

c2
, so that the resulting velocity

profile covers the same distance and consumes energy less
than v(t).

3.3 Comparisons with trapezoidal velocity profile

A trapezoidal velocity profile is commonly used for its
ease of implementation. A trapezoidal velocity profile
(see Figure 5) consists of a constant acceleration section,
followed by a constant velocity section, followed by a
constant deceleration section. In [24], Wang et al. computed
the optimal trapezoidal velocity profile for traveling a given
distanceD. However, their result is only applicable in the
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Fig. 5 Optimal trapezoidal profile computed using the same energy
function shown together with the general optimal profile fortraveling
D = 50m. The general optimal profile we compute gains higher
savings with respect to the trapezoidal profile while accelerating and
decelerating. This yields higher energy savings when the total distance
to travel is less, a scenario commonly seen when the robot hasto
frequently start and stop.

case when there is no bound on the maximum velocity of
the robot. Figure 5 shows the general optimal profile and
optimal trapezoidal profile computed for traveling a distance
of D = 50m, with no maximum velocity constraints.

The general optimal profile we compute gains higher
savings with respect to the trapezoidal profile while
accelerating and decelerating. For example, the optimal
profile yields 1.94% savings when traveling 1m, while
the savings drop to 0.32% when D = 100m for the
parameters calculated on our custom robot. In situations
where the robot has to frequently stop, following an optimal
profile would result in more energy savings and a longer
lifetime. In addition, these figures are highly system-
specific. The velocity profile computed in this work is
guaranteed to minimize the energy consumption for the
stated assumptions.

4 General Solution Incorporating Maximum Velocity
Bound

The optimal profile given in Section 3 does not satisfy any
bound on the maximum velocity imposed by the physical
limitations of the robot. In this section, we solve for the
optimal velocity profile for Problem 2, with a bound on the
maximum velocityv(t) ≤ vm. We now derive the analytical
solution for Problem 2 by first discussing the possible
structures of an optimal profile. Depending on the value of
vm andD, the optimal velocity profile can belong to one of
the following two cases.
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4.1 Unconstrained optimal profile does not violate bound
v(t)≤ vm

In the case that the optimal velocity profile computed in
Section 3 does not exceed the boundvm, then this profile
is a valid solution for the constrained case too. This happens

whenvm≥

√

c4

c2
. Additionally, in the case when the distance

to travel D is small, the optimal velocity profile may not

have enough time to reachvm or
√

c4

c2
. We can observe this

situation in Figure 4 whenD = 5m.

4.2 Unconstrained optimal profile violates the bound
v(t)≤ vm

If the unconstrained optimal profile violates the bound
vm, the constrained optimal velocity profile will consist of
unconstrainedU (v(t)< vm) and constrained arcsC (v(t) =
vm) joined together atcorner points. We show that there
exists an optimal profile with aU−C−U sequence (or one
of its degenerate cases{U−C,C−U,C}) having corner
pointsat timest = t1 andt = t f −t2 (degeneracy occurs when
either or both oft1 andt2 equal to 0).

By definition, there cannot be anyU − U or C −
C sequence, as these do not include anycorner points.
Combining this observation with the following lemma, we
show that the constrained velocity profile is limited to a
U−C−U sequence or one of its degenerate case.

Lemma 2 The optimal velocity profile cannot consist any
sequence of the formC−U−C.

The proof follows a process similar to that in Lemma 1.
We show that anyC−U−C sequence can be replaced by a
singleC segment to reduce the energy consumption.

We now show how to obtain the solution for this case
in closed form. Specifically, we show how to obtainv∗(t)
for the unconstrained and constrained arcs and compute the
corner pointst1 andt2.

We begin by writing the velocity constraint in the form
of state inequalityS̄= (v(t)− vm) ≤ 0. We convert the
state inequalityS̄ into a control equalityS̄(1) and interior
point constraintG by differentiating S̄ once, leading to
S̄(1) = v̇(t) = u and G = ξ (v(t)− vm). The Hamiltonian
is augmented with the control equality constraint between
[t1, t f − t2] and is given byĤ = H + µ(t)a(t). Here,µ(t) is
the slack variable associated with the control constraint and
H is given by Equation 8.

We use the three necessary conditions given in
Equation 9 to obtain the optimal profile in the time interval
[0, t1] and [t f − t2, t f ]. On the constraint boundary, i.e.,
t ∈ [t1, t f − t2], the following necessary conditions must

hold [13],

Ẋ∗(t) =
∂ Ĥ
∂λ

λ̇ ∗(t) =
∂ Ĥ
∂X

0=
∂ Ĥ
∂a

(17)

Additionally, on the two corners (t = t1, t = t f − t2), the
following conditions must hold for the optimal solution,

H(t+1 ) = H(t−1 )+

[

∂G
∂ t

]

t1

,λ (t+1 ) = λ (t−1 )−

[

∂G
∂X

]T

t1

H((t f − t2)
+) = H((t f − t2)

−)

λ ((t f − t2)
+) = λ ((t f − t2)

−) (18)

Using the conditions given above, we can solve for the
optimal control and velocity profile in terms of the constants
for the off-boundary exponential curves, and timest1, t2 and
t f . The optimal velocity profile in this case is given by,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

,

0≤ t ≤ t1
vm, t1≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

,

t f − t2≤ t ≤ t f .

(19)

We can obtain the values of these constants and times
using the initial and final conditions, the transversality
condition given in Equation 15, and the interior point
constraintv∗(t) = vm, t1≤ t ≤ t f − t2 as,

s1 =−
vm

(ekt1−1)2 ,

s2 =−
vm

(ekt2−1)2 ,

t1 = t2 =
1
k

ln









√

c4

c2
+ vm

√

c4

c2
− vm









. (20)

The final time can then be calculated by using the total
distance to travel and the distances traveled in the two
exponential curves.

t f = t1+ t2+
x∗(t f − t2)− x∗(t1)

vm
. (21)

Figure 6 shows the optimal velocity profile obtained
for traveling a distance of 25m with the maximum velocity
bound set tovm = 1m/s. Observe that the optimal velocity
profile follows an exponential curve till it hits the boundary
at t1 = 4.06s and then stays on the constraint boundary,
before following a symmetric exponential curve to zero.
However, this profile is not the same as that obtained from
the unconstrained solution by setting velocity equal tovm

wherever it exceeds. This unconstrained optimal velocity
profile obtained from Section 3 is also shown in Figure 6.
The corresponding optimal controla(t) is shown in Figure 7.
The acceleration is zero whenv(t) is on the constraint
boundary, and follows exponential curves otherwise.
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Fig. 6 Optimal Velocity (v∗(t)) profile obtained for maximum velocity
bound vm = 1m/s. The constrained velocity profile consists of
exponential acceleration and deceleration curves with theconstraint
boundary in the middle. This profile is not the same as that obtained
from unconstrained solution by setting velocity tovm wherever it
exceeds.
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Fig. 7 Optimal control for the case with bound on maximum velocity.
Note that the control is zero whenever the velocity is on the constraint
boundary (see Figure 6).

5 Optimal Profile over Multiple Segments

In many applications, a high level task planner is used to
find the exact path to be followed by the robot. However,
the velocity profile of the robot along this path is free to be
optimized. We use the solution from the preceding sections
to solve for the problem of finding the optimal velocity
profile when the given path consists ofN segments (see
Figure 13). We restrict our attention to the case when the
paths are composed of straight-line segments and constant
curvature turns with possibly different turning radii. For
each segment, we are given maximum allowable velocity for
the robotvm(i) (see Equation 6) and the distance to travel
D(i), 1≤ i ≤ N.

The robot initially starts at and returns to rest, however
the initial and final velocity for the intermediate segmentsis

not constrained to zero. Letv0(i) andvf (i) be the initial and
final velocities for segmenti. Thus,v0(1)= 0 andvf (N) =0.
The velocitiesv0(i) andvf (i) can be non-zero for all other
intermediate segments. If we know thev0(i) andvf (i) that
the optimal uses, we can find the entire velocity profile.

5.1 Velocity profile subroutines

While solving for the optimal profiles in Sections 3 and 4,
we considered only zero initial and final velocity boundary
conditions. Here, we extend this result for possibly non-
zero v0 and vf as initial and final velocities, and use this
extension as a subroutine for solving Problem 3. Note that
in Problem 3, the first and the last segments have zero initial
and final velocities respectively, and hence the energy model
(which ignores the termsc5 andc6 because they cancel-out)
remains valid (see proof in appendix).

For segments with no bound on the maximum velocity,
by following a process similar to that described in Section 3
we get,

s1 =
(v0− vf )(1−e−ktf − ktf )+Dk(1−e−ktf )

ektf (2− ktf )+e−ktf (2+ ktf )−4
,

s2 =
(v0− vf )(1−ektf + ktf )−Dk(1−ektf )

ektf (2− ktf )+e−ktf (2+ ktf )−4
,

s3 = 2c1(s1+ s2)− c3− v0,

s4 =−
s1− s2

k
. (22)

The resulting profiles can be obtained by substituting the
above in Equations 10-12.

Similarly for segments with a maximum velocity bound
vm, the optimal velocity profile is given by,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

+ v0,

0≤ t ≤ t1
vm, t1 ≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

+ vf ,

t f − t2≤ t ≤ t f .

(23)
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where,

s1 =−
(vm− v0)

(ekt1−1)2 , s2 =−
vm− vf

(ekt2−1)2 ,

t1 =
1
k

ln

(

c4+ c2v2
m−2c2v0vm

c4− c2v2
m

+

2(c2vm(c4− c2v0vm)(vm− v0))
1
2

c4− c2v2
m

)

,

t2 =
1
k

ln

(

c4+ c2v2
m− ca2vf vm

c4− c2v2
m

+

2(c2vm(c4− c2vf vm)(vm− vf ))
1
2

c4− c2v2
m

)

. (24)

Figure 8 shows the optimal velocity profile obtained for
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Fig. 8 Optimal velocity profile withv0 = 0.3m/s, vm = 0.4m/s and
vf = 0.1m/s for traveling 30m.

traveling a distance of 30m, with velocity boundvm =

0.4m/s and initial and final velocitiesv0 = 0.3m/s and
vf = 0.1m/s respectively. Note that the acceleration and
deceleration times are different in this case.

6m, 0.8m/s

0.5m, 0.2m/s

6m, 0.8m/s

1m, 0.4m/s

Fig. 9 Typical path for a robot composed of two straight line segments
and two turns of different radii. Segments have different maximum
allowable velocities, depending on their radii.

The following theorem summarizes the results for all the
cases considered.

Theorem 1 The optimal velocity profile that minimizes the
energy consumption given by Equation 5 for a segment with
distance D is given by,

– Equations 13 and 14 when there is no maximum velocity

bound or if vm>

√

c4

c2
, and initial and final velocities for

the segment are both zero. The final time tf is obtained
from Equation 15.

– Equations 22 and 14 when there is no maximum velocity

bound or if vm>

√

c4

c2
, and at least one of initial or final

velocities for the segment is non-zero. The final time tf

is obtained from Equation 15.
– Equations 19 and 20 when the maximum velocity bound

vm ≤

√

c4

c2
and initial and final velocities are both

zero for the segment. The final time tf is obtained from
Equation 21.

– Equations 23 and 24 when the maximum velocity bound

vm ≤

√

c4

c2
, and initial or final velocity is non-zero

for the segment. The final time tf is obtained from
Equation 21. The initial and final velocity for the first
and last segment respectively is zero.

We can use the separate cases of this theorem as
subroutines to compute the optimal velocity profile for
multiple segments using dynamic programming. Note that
the last case is only valid when the initial and final velocity
of the first and the last segment is zero (i.e., the net effect of
c5 andc6 is zero).

5.2 Dynamic Programming

Let Vmax = max{vm(1),vm(2), . . . ,vm(i), . . . ,vm(N)}. We
then discretize the velocity space at the segment boundary

into M + 1 equal partitionsv(k) =
k
M

Vmax,0≤ k≤M. Let

C(v(k), i) be the cost to reach velocityv(k) at theith segment
boundary. LetE(v0,vm,vf ) be a function which gives the
energy consumption for an optimal velocity profile in a
segment starting withv0 and ending withvf , using the
solution in Theorem 1. If eitherv0 > vm or vf > vm then
the function returns the cost asE(v0,vm,vf ) = ∞.

We can then use the following recurrence for theith

segment boundary:

C(v(k), i) = min
0≤ j≤M

(

C(v( j), i−1)+E(v( j),vm(i),v
(k))
)

,

1≤ k≤M.
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Since the robot initially starts from rest, we have the
following,

C(v(k),0) =

{

0 k= 0,

∞ 1≤ k≤M.

The solution can be obtained by backtracking from
C(v(0),N) and finding optimal segment boundary velocity
values. The optimal velocity profile can then be constructed
using these optimal boundary velocity values to find
individual segment profiles using Theorem 1.
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Fig. 10 Optimal velocity profile with different bounds for different
segments. The given path consists of 4 segments with bounds
vm = {0.8,0.2,0.8,0.4}m/sand distancesD = {6,0.5,6,1}m

Figure 10 shows the optimal velocity profile obtained
for a path consisting of 4 segments. The velocity bounds
for these segments arevm = {0.8,0.2,0.8,0.4}m/s and the
distancesD = {6,0.5,6,1}m respectively. By discretizing
velocity at the junction boundaries, we obtain the set of
transition velocities using the recurrence given above as,

v0(1) = vf (4) = 0m/s, vf (1) = v0(2) = 0.2m/s,

vf (2) = v0(3) = 0.2m/s, vf (3) = v0(4) = 0.4m/s.

The profiles between the boundaries are computed using
Theorem 1.

For building the tableC, we considerM+1 discretized
velocities at transition boundaries ofN segments. The
table has sizeO(MN) and can be constructed in time
O(M2N). This discretization can be avoided when a segment
is sufficiently long so that the robot can accelerate (or
decelerate) to the bound for the next segment. In this case
a greedy approach which chooses the transition velocity at
the ith segment boundary using the following rule suffices:

v(i) =











0, i = 0,

min{vm(i−1),vm(i)}, 0< i < N,

0, i = N.

We can then use Theorem 1 to compute velocity profiles for
each segmenti usingv0(i) = v(i−1) andvf (i) = v(i).

Using a procedure similar to that in Lemma 1 we can
show that at any segment boundary, if a velocity profile
decelerates further than min{vm(i),vm(i +1)}, it consumes
more energy than another profile that only decelerates up
to min{vm(i),vm(i +1)}. It can also be shown that the
complete velocity profile obtained by combining profiles
for each segment is optimal, when each distanceD(i) is
large. However, when the distances are small, this strategy
forces the velocity profile to achievevf (i) = v(i) leading
to higher energy consumption. The optimal solution on the
other hand will reach a much lower value forvf (i). The
dynamic programming solution presented here covers this
possibility by incorporating all boundary velocity values.

6 Energy Optimal Paths

In this section, we study the problem of finding an energy
optimal path and a velocity profile along this path, given a
start and goal poses for a car-like robot (refer Problem 4).
Dubins [8] first showed that the minimumlength curves
between two poses consists of at most three segments.
Each segment is either a left or a right turn of minimum
turning radius or a straight line path, and no other type.
The maximum feasible speed along a curve depends on the
turning radius of the robot (Equation 6). In the absence
of any constraints on the maximum speed, we know from
the discussion in Section 3 that the energy consumption is
a monotonically increasing function of the length of the
paths. This suggests that for a car-like robot capable of

traveling at more than
√

c4

c2
at the minimum turning radius,

the minimum length paths are also the minimum energy
paths. The optimal profile for such paths will be those given
in Section 3.

In general, computing the energy optimal paths cannot
be decoupled from finding the velocity profiles. The
structure of the minimum energy paths will depend on
the trade-off between turning radiir(t), maximum feasible
speed as a function of turning radiivm(t), the length of the
path and the energy parameters. While finding a general
solution where the turning radius varies continuously in
time seems difficult, we find an approximate solution by
restricting the robot to move along a sequence of constant
curvature paths.

To find such a path, we build a weighted graph (which
we term as theEnergy Roadmap) G(V,E), where each
vertex represents a discretized pose and velocity, i.e.V =

{(x,y,θ ,v)}1. We add an edge between two verticesvi =

1 In this section,x refers to theX-coordinate of the robot, and not the
parametric position of the robot along a path as used in the preceding
sections.
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(xi ,yi ,θi ,vi) and vj = (x j ,y j ,θ j ,v j) if (i) there exists a
(directed) circular arc (or straight line) from(xi ,yi ,θi) to
(x j ,y j ,θ j ), and (ii)vi andv j are both less than or equal to the
maximum feasible speed along this circular arc. The weight
on the edge fromvi to vj is set to the energy for the minimum
energy velocity profile along this circular arc with start and
end speeds set tovi andv j . The energy is computed using
the result in Theorem 1.

The minimum energy path from the start and goal vertex
can then be computed by any shortest path algorithm onG,
e.g. A* search. The shortest (minimum energy) path will
be a sequence of poses and discretized velocities; the entire
robot path can be obtained by connecting the sequence of
poses with circular arcs or straight line segments and the
optimal profile along the path can be obtained by applying
Theorem 1 to the corresponding sequence of velocities.
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(b)

Fig. 11 In the Energy Roadmap we connect any two discretized poses
by a circular path, if it exists. (a) All possible circular paths starting
from (0,0,0). The minimum turning radius is set to 1m. A total of 2254
paths exists from(0,0,0) using side resolution of 0.1mand orientation
resolution of π

64. (b) Paths starting from(0,0,0) reaching all discretized
vertices with(x,3,θ ). There exists a unique circular path starting from
a given pose reaching a givenposition.

In the Energy Roadmap, although the poses are
discretized, we allow connecting any two poses with a
circular arc (Figure 11). Note that we do not impose any
grid connectivity or fixed radius turns. Further, although we
discretize velocities at a pose, we use the optimal energy
profiles leveraging Theorem 1 to interpolate the velocity
between two vertices (as opposed to enforcing any fixed
profile).

The complete algorithm is presented in Algorithm 1. The
main subroutinesGetMinEnergyandGetMinEnergyProfile
are applications of Theorem 1. The subroutineGetPath finds
the directed circular arc or straight line path. The rest of the
subroutines are obvious from their names.

If |X|, |Θ |, |V| are the number of discretized positions,
orientations and velocities respectively, then the Energy
Roadmap has|V| = |X| · |Θ | · |V| vertices. Checking for a
feasible path between every pair of vertices would require
O(|X|2|Θ |2|V|2) checks. Instead we can reduce the number
of checks toO(|X|2|Θ |) by observing that there is exactly

Fig. 12 There exists only one circle passing through a pose(xi ,yi ,θi)
and a position(x j ,y j). All other circular arcs (shown dashed) passing
through the same pair of points will not have a tangent aligned alongθi

at(xi ,yi). Hence, in building the Energy Roadmap, instead of searching
over all pairs of poses (O(|X|2 · |Θ |2)), we search over pairs of poses
and positions (O(|X|2 · |Θ |)).

one circular arc or line from a given pose(xi ,yi ,θi) to a
position (x j ,y j) as shown in Figure 12. Hence, we only
check each pose with every other position for a feasible
path (Lines 4–6 in Algorithm 1). Looking up a vertex from
a pose or position while adding the edge (FindVertex in
Lines 12–13) can be done in constant time by maintaining a
map of pointers.

6.1 Implementation

We implemented2 the algorithm in C++. We used the GNU
Scientific Library [10] to perform numerical integration
in computing energy and for solving the transversality
condition given in Equation 15. To find the Dubins’
paths, we used the Open Motion Planning Library [5].
Our implementation makes the following optimizations to
reduce the runtime and storage requirements:

– In general, the number of edges inG can be
O(|X|2|Θ ||V|2). For a fine discretization, the storage
can become prohibitively high. We reduce the storage
requirement toO(|X||Θ ||V|2) by observing that the
paths between two poses are invariant to rotation and
translation in the plane. Hence, instead of computing
and storing edges between all possible pairs of vertices,
we initially create a lookup table consisting of outgoing
edges from(0,0,θ ,v0), for all θ ∈ Θ and v0 ∈ V to
all other vertices. While finding the shortest path using
A* search, each time a new vertex, say(x,y,θ ,v), is
discovered, we first transform all other vertices in the
relative coordinate frame centered at(x,y). We can
then extract its neighbors by looking up the relative
coordinates in the table. This approach trades the
running time of the search phase with the running time
for building the Energy Roadmap (Lines 4–18) and the
storage required for the Energy Roadmap.

2 Code is available to download fromhttp://rsn.cs.umn.edu/
index.php/Downloads
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– To further speed up the A* search, we use a lower bound
on the energy as a heuristic function. For any vertex
(xi ,yi ,θi ,vi), a lower bound on the energy to reach the
goal (xt ,yt ,θt ,vt) can be computed asc4

d
vm

whered is
the Euclidean distance between(xi ,yi) and(xt ,yt).

A discretization of 0.1m, π
64rad and 0.5m/s was used for

finding minimum energy trajectories. Energy parameters
c1, . . . ,c4 were set to 1,Fmax = 0.05, m= 1 and minimum
turning radius was set to 1m for each instance. The graph,
thus created consisted of 6.4M vertices. The lookup table
to store potential edges (as described above) used 10GB
memory. Computing the minimum energy path typically
took under 15mins on a 3.0GHz computer. To find the
optimal velocity profile along the Dubins’ path a resolution
of 0.02m/swas used for dynamic programming.

6.2 Comparison with Dubins’ Paths

Figure 13 shows the energy-optimal paths and velocity
profiles obtained using Algorithm 1 for four start and goal
poses. These four instances are representative of the trade-
off between the turning radius, maximum velocity and
energy. Figure 13(a) shows an instance where the Dubins’
path consisted of three consecutive circular segments of
minimum turning radius. The maximum allowable speeds
along turns of minimum radii using Equation 6 was
0.22m/s. Hence, the optimal velocity profile along the
Dubins’ path (right column) was forced to move at a slower
speed, for a longer time consequently paying a higher energy
cost. On the other hand, the optimal path consisted of a
straight line segment and turns with greater turning radii,
allowing the robot to move at a higher velocity. The resulting
path, although longer than the Dubins’ path, takes a lesser
amount of time to travel and pays a lower energy cost.

Figure 13(b) shows an instance where the minimum
energy path doesnot contain a straight line segment,
whereas the Dubins’ path does. Both paths begin and end
with circular segments of minimum turning radius. The
minimum energy path, however, spends lesser time on the
minimum turning radius segments and switches to segments
with higher turning radius (consequently lower energy) in
the middle. We can observe that one of the characteristics
of minimum energy paths is to avoid turns with minimum
turning radius. Figure 13(c) shows an instance where the
minimum energy path does not contain any segment of
minimum turning radius.

We observed that as the length of the minimum radius
turns becomes smaller than length of the straight line
segment of the Dubins’ path, the energy overhead of
traveling at slower speeds decreases. Figure 13(d) shows one
such instance.

It must be noted that these observations are a function
of the system parameters. For example, if the robot is
capable of moving at very high speeds at minimum turning
radius, then the minimum energy path will coincide with the
minimum length paths. Nevertheless, Algorithm 1 will find
the minimum energy path, subject to the discretization.

Algorithm 1: Minimum Energy Trajectories
Input : s, t: Start and goal pose
Data: X,Θ ,V discretized positions, orientations, speeds
Output : {φ (t),v(t)}: Steering angle and translational velocity

profiles.
1 P←{(l ∈ X,θ ∈Θ)} /* discretized poses */

2 V←{(p∈ P,v∈V)} /* vertices */

3 E← /0
/* There exists exactly one circle/line through

given pose & position */

4 forall the p∈ P do
5 forall the l ∈ X do
6 (θ , len, rad)← GetPath (p, l )
7 if θ ∈Θ then
8 vm← GetMaxVel (rad)
9 forall the v0 ∈V AND v0 ≤ vm do

10 forall the vf ∈V AND vf ≤ vm do
11 E← GetMinEnergy (len,v0,vf ,vm)
12 vi ← FindVertex (p,v0)
13 vj ← FindVertex (l ,θ ,vf )
14 E← E ∪ Edge (vi ,vj ,E)
15 end
16 end
17 end
18 end
19 end
20 s← FindVertex (s,0)
21 t← FindVertex (t,0)
22 Path←A* Search (V,E,s, t)
23 φ (t)←GetSteering (Path)
24 v(t)←GetMinEnergyProfile (Path)
25 return {φ (t),v(t)}

7 Calibration and Experiments

To test the validity of our results, we performed experiments
using our custom robot. We first describe a simple procedure
to find the energy model (Equation 5) of the robot for a given
flat surface.

7.1 Calibration

We use a custom-built robot (see Figure 14) for experiments.
Two DC motors with their output shafts coupled together
through a gearbox drive the robot. The robot has car-like
steering controlled by a servo motor through a fixed steering
rod (unlike Ackermann steering). We use separate batteries
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(a) Energy-Optimal trajectory(39.4J,7.6m). Dubins’ path with energy-optimal velocity profile(40.1J,6.9m). The Dubins’ path
consists of C-C-C segments, whereas the minimum energy pathfound consists of 1 straight line and 5 circular segments.
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(b) Energy-Optimal trajectory(19.1J,3.7m). Dubins’ path with energy-optimal velocity profile(20.7J,3.6m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energy pathfound consists of 4 circular segments.
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(c) Energy-Optimal trajectory(17.4J,4.7m). Dubins’ path with energy-optimal velocity profile(17.8J,4.6m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energy pathfound consists of 1 straight line initially and 3 circular segments.
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(d) Energy-Optimal trajectory(26.29J,6.55m). Dubins’ path with energy-optimal velocity profile(26.35J,6.59m). The Dubins’ path
consists of C-S-C segments, whereas the minimum energy pathfound consists of 1 straight line and 5 circular segments.

Fig. 13 The left column shows the energy-optimal paths found using Algorithm 1. The color profile along the path indicates the optimal velocity
profile, also shown in the middle column. The dashed path is the minimum length Dubins’ paths. The energy-optimal velocity profiles along the
Dubins’ paths (using the dynamic programming presented in Section 5) are shown in the right column. Energy parametersc1, . . .,c4 were set to 1,
Fmax= 0.05,m= 1 and minimum turning radius was set to 1m for each instance. A discretization of 0.1m, π

64rad and 0.5m/s was used for finding
minimum energy trajectories. Resolution of 0.02m/s was used for dynamic programming.
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Fig. 15 Figures obtained during calibration on the corridor surface. Left to right:(a) The robot initially accelerates from rest to various set velocity
values. We compute the average current and voltage for the region where the robot moves atvset (STEP 1).(b) Current consumption as a linear
function of the velocity, when the motor is not accelerating(STEP 2).(c) Voltage applied to the motor as a linear function of the velocity, when
the motor is not accelerating (STEP 2).(d) Calibration procedure to determine the parameterc1 in the energy model. We accelerate the robot with
various set acceleration valuesaset while logging current and voltage values (STEPS 3 and 4).

Fig. 14 Left: Custom-built robot used in our experiments.Right:
Attopilot voltage and current measurement circuit from SparkFun
Electronics.

to drive the DC motors and power the rest of the electronics
on the robot.

Our method utilizes a simple current and voltage
measurement circuit (Figure 14) connected between the
output of the motor and the motor driver circuit. This
circuit measures the current flowing through and the voltage
across the motor. An optical encoder installed on one of the
robot’s wheels measures its linear velocity. In the calibration
procedure described next, we fix the steering of the robot so
that it drives in a straight line.

We can write Equations 2 and 3 as,

i(t) = b1+b2v(t)+b3a(t),

e(t) = b4+b5v(t)+b6a(t) (25)

where b1, . . . ,b6 are linear combinations of the internal
parameters of the motors. The calibration procedure to
obtain the energy parameters consists of the following steps:

STEP 1: Drive the robot at a constant velocity (vset)
for some time interval (we used 10s in our calibration
experiments). Log the current and voltage across the motor.
Repeat for differentvset values ranging from the minimum to
the maximum achievable velocity for the robot. Figure 15(a)
shows some of the actual profiles obtained during calibration
for vset from 0.5m/s to 2.5m/s.

STEP 2: Compute the average current and voltage for
each of the above trials disregarding the initial acceleration

phase. Using Equation 25, we can find the parametersb1,
b2, b4 and b5 using least-squares linear fitting to the data
(see Figure 15(b and c)).

STEP 3: To find the remaining two termsb3 andb6 in
the model, program the robot to drive from rest at various
set acceleration valuesaset to reach some velocity value (we
used 1.6m/s for our system, see Figure 15(d)).

STEP 4: Compute the values ofb3 and b6 by
substitutingaset andb1,b2,b4 andb5 values obtained above
in Equation 25 and taking the average of all the readings.

STEP 5: Finally, calculate the required parameters
c1, . . . ,c4 in Equation 5 usingc1 = b3b6, c2 = b2b5,
c3 = b1b5+b2b4, andc4 = b1b4.

Table 1 Energy model parameters (SI units) obtained using the
calibration procedure.

Surface c1 c2 c3 c4

Corridor 17.75 1.16 10.46 4.70
Concrete 5.47 0.77 10.10 4.24

Grass 8.10 5.28 28.01 25.07

Using the above procedure, we calibrated our robot
on three surfaces: indoors on a corridor and outdoors on
concrete and grass. The corridor surface was flat whereas
the two outdoor surfaces had uneven terrain, the grassy area
more so. Figure 15 shows plots for the complete calibration
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Fig. 16 Current and voltage as a function of velocity, for the grass
surface outdoors. Since the surface outdoors is not flat, theplots
contain more noise than the corridor surface (Figure 15(b) &(c))
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procedure with the corridor surface. Figure 16 shows the
current and voltage plots for the grass surface. The current
consumption and voltage required for driving the robot are
higher for grass than for the corridor surface. Since the
surfaces outdoors are uneven, the plots contain more noise
than those for corridor. The model parameters computed for
all surfaces are shown in Table 1.

7.2 Experiments

We conducted experiments on the smooth corridor surface to
experimentally validate the optimal velocity profiles found
in Section 5 and compared with two other profiles. We first
computed the analytical solution for the velocity profile to
travel the given distance. We then sampled this profile at
10Hzand stored the values in a look-up table.
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Fig. 17 Optimal velocity profile executed by the robot for mul-
tiple segments. The dashed curve shows the optimal profile com-
puted using the dynamic programming solution for segments with
D = {10,3,10}mand maximum velocity constraintsvm = 1,0.2,1m/s.

Figure 17 shows the optimal profile computed using the
dynamic programming solution presented in Section 5, for a
given path three segments with distancesD = {10,3,10}m
and maximum velocity constraints asvm = {1,0.2,1}m/s.
The computed velocity profile is shown as a dashed curve.
The total energy consumed over the entire profile was 595J.
The actual profile executed has small deviations arising
due to noise and disturbances on the surface. In this work,
we pre-compute the optimal trajectory for the robot. A
useful extension to this could be to design an optimal
velocity feedback controller which minimizes the energy
consumption.

We compare the energy consumption of our optimal
profile with two commonly-used trapezoidal profiles. We
chose the maximum speeds for these profiles as 1m/s and
2m/s, so that the robot covers the same distance taking more

and less time than the optimal respectively. We perform
these comparisons forD = 20mandD = 45m.
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Fig. 18 Left: Optimal velocity profile executed by the robot for
traveling 20m in 18.4s while consuming 296J energy. The optimal
profile is shown as dashed.Right: Sub-optimal velocity profiles
executed by the robot for traveling 20m at maximum set velocities of
1m/sand 2m/s. The energy consumption for these profiles is 303J and
319J.

Figure 18 shows the optimal, slower and faster velocity
profiles executed by the robot in the corridor. The optimal
profile computed is also shown in Figure 18 as dashed.
Table 2 shows the comparison of the energy consumption
for all the trials conducted. As we can observe, the optimal
profile consumes lesser energy than the two sub-optimal
profiles. Also, the energy savings become more significant
as the distance traveled increases.

Table 2 Energy consumption during experiments. The numbers in
parentheses indicate the percentage of extra energy consumption with
respect toEopt.

D (m) Eopt(J) Eslow(J) Ef ast(J)

20 296 303 (2.4%) 319 (7.8%)
45 656 694 (5.8%) 696 (6.1%)

8 Conclusion

In this work, we studied the problem of computing
trajectories for a car-like robot so as to minimize the energy
consumed while traveling on a flat surface. We separately
considered the problem of computing the energy optimal
velocity profiles, and that of simultaneously computing the
energy optimal paths and velocity profiles. We presented
closed form solutions for the velocity profiles for two
cases: no constraints on the robot’s speed, and a single
upper-bound on the speed. For the general problem
of computing both paths and trajectories, a discretized
graph search algorithm that leverages our closed form
solution for optimal velocity profiles was presented. Using
an implementation of this algorithm, we investigated
the structure exhibited by minimum energy paths and



16 Pratap Tokekar et al.

highlighted instances when these paths differ from the
minimum length (Dubins’) paths. The closed-form velocity
profiles and the obstacle-free trajectories can be used as
subroutines by sampling-based planners for computing
trajectories in the presence of obstacles.

In addition, we presented a calibration procedure for
obtaining robot’s internal parameters related to energy
consumption. We demonstrated the utility of the calibration
procedure and the algorithms presented in the paper with
experiments performed on a custom-built robot.

Acknowledgements This material is based upon work supported by
the National Science Foundation under Grant Nos. 0916209, 0917676
and 0936710.
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5. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning
Library. IEEE Robotics & Automation Magazine19(4), 72–
82 (2012). DOI 10.1109/MRA.2012.2205651.http://ompl.
kavrakilab.org

6. Ding, L., Deng, Z., Gao, H., Nagatani, K., Yoshida, K.: Planetary
rovers’ wheel—soil interaction mechanics: new challengesand
applications for wheeled mobile robots. Intelligent Service
Robotics4(1), 17–38 (2011)

7. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion
planning. Journal of the ACM40(5), 1048–1066 (1993). DOI
http://doi.acm.org/10.1145/174147.174150

8. Dubins, L.: On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents. American Journal of Mathematics79(3),
497–516 (1957)

9. Fraichard, T., Scheuer, A.: From reeds and shepp’s to continuous-
curvature paths. Robotics, IEEE Transactions on20(6), 1025–
1035 (2004)

10. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G.,
Alken, P., Booth, M., Rossi, F.: GNU Scientific Library Reference
Manual, 3rd edn. (2007)

11. Gregory, J., Olivares, A., Staffetti, E.: Energy-optimal trajectory
planning for robot manipulators with holonomic constraints.
Systems & Control Letters61(2), 279–291 (2012)

12. Guzzella, L., Sciarretta, A.: Vehicle propulsion systems: introduc-
tion to modeling and optimization, vol. 10. Springer Verlag(2007)

13. Hull, D.: Optimal control theory for applications. Springer Verlag
(2003)

14. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning
using incremental sampling-based methods. In: Decision and
Control (CDC), 2010 49th IEEE Conference on, pp. 7681–7687.
IEEE (2010)

15. Kim, C., Kim, B.: Minimum-Energy Rotational Trajectory
Planning for Differential-Driven Wheeled Mobile Robots. In:

Proceedings of 13th International Conference on Advanced
Robotics, pp. 265–270 (2007)

16. Kim, C., Kim, B.: Minimum-energy translational trajectory
generation for differential-driven wheeled mobile robots. Journal
of Intelligent and Robotic Systems49(4), 367–383 (2007)

17. Kirk, D.: Optimal Control Theory: An Introduction. Prentice Hall
(1970)

18. Lamiraux, F., Lammond, J.P.: Smooth motion planning forcar-like
vehicles. Robotics and Automation, IEEE Transactions on17(4),
498–501 (2001)

19. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning.
The International Journal of Robotics Research20(5), 378–400
(2001)

20. Mei, Y., Lu, Y., Hu, Y., Lee, C.: Energy-efficient motion planning
for mobile robots. In: Proceedings of IEEE International
Conference on Robotics and Automation (2004)

21. Reeds, J., Shepp, L.: Optimal Paths for A Car That Goes Both
Forwards and Backwards. Pacific Journal of Mathematics145(2),
367–393 (1990)

22. Sun, Z., Reif, J.: On finding energy-minimizing paths on terrains.
IEEE Transactions on Robotics21(1), 102–114 (2005)

23. Tokekar, P., Karnad, N., Isler, V.: Energy-Optimal Velocity
Profiles for Car-Like Robots. In: Proceedings of IEEE
International Conference on Robotics and Automation (2011)

24. Wang, G., Irwin, M., Berman, P., Fu, H., La Porta, T.: Optimizing
sensor movement planning for energy efficiency. In: Proceedings
of the ACM International Symposium on Low power electronics
and design (2005)

25. Wigstrom, O., Lennartson, B., Vergnano, A., Breitholtz, C.: High-
level scheduling of energy optimal trajectories. Automation
Science and Engineering, IEEE Transactions on10(1), 57–64
(2013)

A Proof: Unconstrained Solution

The state transition equation can be written as,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

v(t)
a(t)

]

(26)

The objective is to find a velocity profilev∗(t) which minimizes the
total energy required for motion given by the following costfunctional,

J =
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt, (27)

where the final timet f is kept a free variable. The initial boundary
conditions are given as,

x(0) = 0, v(0) = 0, (28)

and the final boundary conditions are given as,

x(t f ) = D, v(t f ) = 0. (29)

Hamiltonian

The hamiltonianH(X,λ ,u, t) is defined as,

H(X,λ ,u, t) = J+λ1(t)ẋ(t)+λ2(t) ˙v(t), (30)

where λ1(t) and λ2(t) are the Lagrange multipliers, also called the
co-state variables which include the state transition equations as a
constraint to the objective.
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When there is no bound on the maximum velocity, the Hamiltonian
for this problem can be obtained using Equations 26 and 27 as,

H(X(t),a(t),λ (t), t) = c1a2(t)+c2v2(t)+c3v(t)

+c4+λ1(t)v(t)+λ2(t)a(t) (31)

where the accelerationa(t) is the control.
The three necessary conditions fora∗(t) to optimize the

Hamiltonian [17] for all timet ∈ [0, t f ] are given as,

Ẋ∗(t) =
∂H
∂ λ

, λ̇ ∗(t) =−
∂H
∂X

, 0=
∂H
∂a

(32)

By substituting we get,

ẋ(t) = v(t),

v̇(t) = a(t),

λ̇1(t) = 0,

λ̇2(t) = 2c2v(t)+c3+λ1,

λ2(t) =−2c1a(t),

∴ λ2(t) =−2c1v̇(t).

Using the last two equations, we can write,

−2c1v̈(t) = 2c2v(t)+c3+λ1,

2c1v̈(t)+2c2v(t)+c3+λ1 = 0.

We can solve for this second order differential equation to yield,

v∗(t) = s1ekt +s2e−kt−

(

c3+s3

2c1

)

(33)

wherek=
√

c2
c1

ands1−s4 are constants andλ1 = s3.

Applying the state transition equations, we can get the optimal
control and states given as,

a∗(t) = ks1ekt−ks2e−kt (34)

x∗(t) =
s1ekt

k
−

s2e−kt

k
−

(

c3+s3

2c1

)

t +s4. (35)

We can solve fors1−s4 in terms of the final timet f by substituting
the boundary conditions given in Equations 28 and 29 forv∗(t) and
x∗(t). We obtain,

s1 =−
Dk

kt f +ekt f (kt f −2)+2
,

s2 = s1ekt f ,

s3 = 2c1(s1+s2)−c3,

s4 =−
s1−s2

k
. (36)

By substituting in Equations 34-35 we obtain,

a∗(t) = D

(

c2

c1

)

(

e(kt f − t)−e(kt)

kt f +ekt f (kt f −2)+2

)

,

v∗(t) = D

√

c2

c1

(

(1+ekt f − (ek(t f−t)+ekt))

kt f +ekt f (kt f −2)+2

)

,

x∗(t) = D

(

(ek(t f−t)−ekt)− (ekt f −1)+kt(ekt f +1)

kt f +ekt f (kt f −2)+2

)

. (37)

Since the final time is free, it can be solved for using the additional
boundary condition (known as the transversality condition) given by,

H(X∗(t f ),a
∗(t f ),λ ∗(t f ), t f ) = 0. (38)

Substituting Equations 34-35 and 36 above results in,

(D
c2

c1
+2)(1−ekt f )+

√

c4

c1
kt f (1+ekt f ) = 0, (39)

which is an equation in single variablet f and can be solved using
existing solvers. (We used MATLAB’ssolve function). Alternatively,
if the final time is fixed, we can directly substitute this given value in
Equation 37 to findv∗(t).

B Proof for Lemma 1

Proof Consider any velocity profilev(t) shown in Figure 19. LetD
andE be the total distance covered and energy consumed byv(t). This

profile crosses
√

c4

c2
between times[t1, t2] and [t3, t4]. Let d12 andd34

be the distances covered byv(t) in these sections. The total energy
consumption ofv(t) is given by,

E = E01+E12+E23+E34+E45, (40)

whereEi j refers to the energy consumption to cover the distancedi j .
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Fig. 19 Sections of this velocity profile crossing (vc =

√

c4

c2
) between

[t1, t2] and [t3, t4] can be replaced by constant velocity (vc) sections
resulting in a velocity profile that consumes lesser energy to travel the
same distance.

We construct another velocity profilev′(t) by replacing the

sections[t1, t2] and [t3, t4] by constant velocityvc =

√

c4

c2
sections for

time
d12

vc
and

d34

vc
respectively. The total distance traveled byv′(t) is

D, same asv(t). The total energy consumption ofv′(t) is given by,

E′ = E01+E′12+E23+E′34+E45, (41)

sincev′(t) is the same asv(t) everywhere exceptt ∈ [t1, t2] and t ∈
[t3, t4].

We now show thatE′ ≤ E by proving bothE′12≤ E12 andE′34≤
E34. This result can then be generalized to velocity profiles with any
number of crossing sections in either directions.

First, consider the energy consumptionE12 for v(t),

E12 =

∫

t1

t2[

c1a2(t)+c2v2(t)+c4

]

dt+c3d12. (42)
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Now, let us considerE′12. The time taken in this case would be

tc =
d12

vc
. The energy consumption is,

E′12 =
∫

t1

tc[

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt,

= c2vcd12+c3d12+c4
d12

vc
. (43)

The distanced12 can also be written as,

d12 =

∫

t1

t2
[v(t)dt] . (44)

Substituting Equation 44 in 43, we obtain,

E′12 = c2

∫

t1

t2
vcv(t)dt+c3d12+c4

∫

t1

t2 v(t)
vc

dt. (45)

Using Equations 42 and 45, we can write,

E12−E′12 = c1

∫

t1

t2
a2(t)dt

+
c2

vc

∫

t1

t2
[vc(t)−v(t)]

[

c4

c2
−v(t)vc

]

.dt

∴ E12−E′12≥ 0,

sincev(t)≤ vc≤

√

c4

c2
. For the section betweent3 andt4, we can show

thatE34−E′34≥ 0.
In general we can replace any number of such sections crossing

√

c4

c2
to yield another velocity profile with lower energy covering

the same distance moving at
√

c4

c2
. Hence, once the velocity profile

hits
√

c4

c2
, there is no reason to deviate from this value except at the

boundary (initial and final conditions). ⊓⊔

C Proof: Constrained Solution

We begin by writing the velocity constraint in the form of state
inequalityS̄= (v(t)−vm)≤ 0. The state inequalitȳS is converted into
a control equality and interior point constraint by differentiatingS̄once
leading to,

S̄(1) = v̇(t) = u.

v(t1) = vm (46)

Along the unconstrained arc, the state transition is governed by
Equation 26. On the constrained arc, the state transition isgiven by,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

vm

0

]

(47)

The Hamiltonian is augmented with the control equality constraint
in [t1, t f − t2] and is given by,

Ĥ = c1a2(t)+c2v2(t)+c3v(t)+c4

+λ1(t)v(t)+λ2(t)a(t)+µ(t)a(t) (48)

whereµ is the slack variable associated with the control constraint. In
the interval[0, t1] and[t f − t2, t f ], the Hamiltonian is given by,

H = c1a2(t)+c2v2(t)+c3v(t)

+c4+λ1(t)v(t)+λ2(t)a(t) (49)

The interior point constraint is given by,

G= ξ (t)(v(t)−vm). (50)

C.1 0≤ t ≤ t1

Using the necessary conditionλ̇ =−
∂H
∂x

we get,

λ̇1 = 0,

∴ λ1 = s3.

and,

λ̇2 =−
∂H
∂x

, (51)

∴ λ̇2 =− [2c2v(t)+c3+s3] . (52)

Applying the third necessary condition, 0=
∂H
∂a

we get,

0= 2c1a(t)+λ2(t),

∴ λ2(t) =−2c1a(t).

Differentiating the above equation we get,

˙λ2(t) =−2c1v̈(t).

From Equation 52 we can write,

2c1
¨v(t) = 2c2v(t)+c3+s3,

∴ v̈(t)−
c2

c1
v(t)−

c3+s3

2c1
= 0.

The solution for the above differential equation is given as,

v∗(t) = s1ekt +s2e−kt−
c3+s3

2c1
,

a∗(t) = s1kekt−s2ke−kt,

x∗(t) =
s1

k
ekt−

s2

k
e−kt−

c3+s3

2c1
t +s4,

λ ∗1 (t) = s3,

λ ∗2 (t) =−2c1a∗(t).

Using initial conditionsx(0) = 0 andv(0) = v0, we get,

s4 =−
s1−s2

k
,

c3+s3

2c1
= s1+s2−v0.

Putting these together we get,

v∗(t) = s1ekt +s2e−kt− (s1+s2−v0),

a∗(t) = s1kekt−s2ke−kt,

x∗(t) =
s1

k
ekt−

s2

k
e−kt− (s1+s2−v0)t−

s1−s2

k
,

λ ∗1 (t) = 2c1s1+s2−v0−c3,

λ ∗2 (t) =−2c1a∗(t),

wheres1 ands2 are two constants left to be evaluated.
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C.2 t f − t2≤ t ≤ t f

In this section, the system is governed by the same state equation as
in the interval 0≤ t ≤ t1. Hence, we get a similar form for the optimal
state and control given by,

v∗(t) = s′1e−kt f ekt +s′2ekt f e−kt−
c3+s′3

2c1
,

a∗(t) = s′1ke−kt f ekt−s′2kekt f e−kt,

x∗(t) =
s′1
k

e−kt f ekt−
s′2
k

ekt f e−kt−
c3+s′3

2c1
t +s′4,

λ ∗1 (t) = s′3,

λ ∗2 (t) =−2c1a∗(t).

wheres′1 . . .s
′
4 are the new constants to be solved for. Using the final

condition,x(t f ) = D, we get

D =
s′1
k
−

s′2
k
−

c3+s′3
2c1

t f +s′4,

∴ s′4 = D−

[

s′1
k
−

s′2
k
−

c3+s′3
2c1

t f

]

.

Using the second final condition,v(t f ) = vf we get,

vf = s′1+s′2−
c3+s′3

2c1
,

∴ s′3 = 2c1(s
′
1+s′2−vf )−c3.

The equations can then be written as,

v∗(t) = s′1e−k(t f−t)+s′2ek(t f−t)− (s′1+s′2−vf ),

a∗(t) = s′1ke−k(t f−t)−s′2kek(t f−t),

λ ∗1 (t) = 2c1(s
′
1+s′2−vf )−c3,

λ ∗2 (t) =−2c1a∗(t).

C.3 Corner conditions

We can now use the corner conditions to determine the unknown
constantss1,s2,s′1,s

′
2. The corner conditions state thatλ ((t f − t2)+) =

λ ((t f − t2)−) andv((t f − t2)+) = v((t f − t2)−) andµ((t f − t2)+) = 0,

H(t+2 ) = H(t−2 ),

∴ a(t f − t2) = 0,

∴ s′2 = s′1e−2kt2.

Using the other corner conditionv((t f − t2)+) = v((t f − t2)−) we have,

v(t f − t2) = vm,

∴ s′1e−kt2 +s′1e−kt2− (s′1+s′1e−2kt2−vf ) = vm,

∴ s′1 =−
vm−vf

(e−kt2−1)2 .

Using similar arguments at the other cornert = t1 we get the final form
for the optimal velocity profile as,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

+v0,

0≤ t ≤ t1
vm, t1 ≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

+vf ,

t f − t2 ≤ t ≤ t f .

where,

s1 =−
(vm−v0)

(ekt1−1)2 ,

s2 =−
vm−vf

(ekt2 −1)2 ,

Using the transversality conditionH(t f ) = 0, we can determine the
timest1 andt2 as,

t1 =
1
k

ln

(

c4+c2v2
m−2c2v0vm

c4−c2v2
m

+

2(c2vm(c4−c2v0vm)(vm−v0))
1
2

c4−c2v2
m

)

,

t2 =
1
k

ln

(

c4+c2v2
m−ca2vf vm

c4−c2v2
m

+

2(c2vm(c4−c2vf vm)(vm−vf ))
1
2

c4−c2v2
m

)

.

(53)

and the final time can then be calculated by using the total distance to
travel and the distances traveled in the two exponential curves. It is easy
to see that ifv0 or vf is equal tovm, thent1 = 0 or t2 = 0 respectively.

D Proof for Lemma 2

Proof Consider any velocity profile consisting of aC−U−C
sequence covering distanceD. We can replace thisC−U−C sequence
with a singleC section, so that the resulting velocity profile covers the
same distance and consumes energy less than the original profile.

Let v(t) be any velocity profile that contains aC−U−C
sequence. That is,v(t) = vm(t) for t0 ≤ t ≤ t1 and t2 ≤ t ≤ t3 and
v(t)< vm betweent1 ≤ t ≤ t2. The energy consumption of this profile
for traveling a distanceD = d01+d12+d23 is E = E01+E12+E23,
whereEi j is the energy spent in travelingdi j for v(t). We construct
another velocity profile that is identical tov(t) in [t0, t1] and[t2, t3] but
covers the sectiond12 at v(t) = vm. The energy consumption for this
new profile differs only in thed12 section.

By following a process similar to that in Lemma 1, we can show
thatE′12≤ E12 leading toE′ ≤ E. Hence, anyC−U−C sequence can
be replaced by a singleC segment to reduce the energy consumption.
Hence, the optimal velocity profile will never consist of aC−U−C
sequence. ⊓⊔

E Proof of Energy Model for Non-zero Initial and Final
Velocities

Lemma 3 Let τ be a path with N segments starting and returning
to rest, i.e., v0(1) = 0 and vf (N) = 0. Let E14(i) and E16(i) be the
minimum energy obtained for the ith segment using Equations 5 and 4
respectively. Then∑i E14(i) = ∑i E16(i).
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Proof First, consider the energy obtained using Equation 4. For each
segment, we have

E16(i) =
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)

+c4+c5a(t)+c6v(t)a(t)
]

dt

=
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt

+
∫

0

t f [

c5a(t)+c6v(t)a(t)
]

dt

= E14
16(i)+E56

16(i).

Now we have,

∑
i

E16(i) =∑
i

E14
16(i)+∑

i

E56
16(i)

=∑
i

E14
16(i)

=∑
i

E14(i).

The second statement follows since∑i E
56
16(i) = 0 when v0(0) =

vf (N) = 0 as given by [1]. That is, the net effect ofc5 andc6 is zero
when the robot starts and returns to rest. ⊓⊔


