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Abstract— We study the problem of tracking mobile targets
using a team of aerial robots. Each robot carries a camera
to detect targets moving on the ground. The overall goal is to
plan for the trajectories of the robots in order to track the most
number of targets, and accurately estimate the target locations
using the images. The two objectives can conflict since a robot
may fly to a higher altitude and potentially cover a larger
number of targets at the expense of accuracy.

We start by showing that k ≥ 3 robots may not be able
to track all n targets while maintaining a constant factor
approximation of the optimal quality of tracking at all times.
Next, we study the problem of choosing robot trajectories to
maximize either the number of targets tracked or the quality of
tracking. We formulate this problem as the weighted version of
a combinatorial optimization problem known as the Maximum
Group Coverage (MGC) problem. A greedy algorithm yields a
1/2 approximation for the weighted MGC problem. Finally,
we evaluate the algorithm and the sensing model through
simulations and preliminary experiments.

I. I NTRODUCTION

We study the problem of tracking multiple moving targets
using aerial robots. We consider the scenario where cameras
that face downwards are mounted on the robots to track
targets moving on the ground plane. A robot can potentially
track more targets by flying to a higher altitude, thus in-
creasing its camera footprint. However, this may reduce the
quality of the view due to the increased distance between
the cameras and the targets. There is a trade-off between
the number of targets tracked and the corresponding quality
of tracking. We investigate this trade-off and present an
approximation algorithm for multi-target tracking.

We start by showing that it may not always be possible
to track all targets while always maintaining the optimal
quality of tracking (or any factor of the optimal quality), even
if the targets’ motion is fully known. Hence, we focus on
the following two variants: maximize the number of targets
tracked subject to a desired tracking quality per target, and
maximize the sum of quality of tracking for all targets.
The two problems can be formulated as the unweighted
and weighted versions of the Maximum Group Coverage
Problem (MGC). A simple greedy approach provides a 1/2
approximation to unweighted MGC [1]. We show that the
approximation guarantee also holds for the weighted case
which allows a practical solution to the trajectory planning
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France.antonio.franchi at laas.fr

This material is based upon work supported by the National Science
Foundation under Grant Nos. 1317788 and 1111638.

problem with provable performance guarantees. We evaluate
the algorithm in simulations and preliminary experiments
with an indoor platform using four aerial robots.

The rest of the paper is organized as follows. We begin
with the related work in Section II. The problem setup and a
discussion of the sensing quality are presented in Section III.
The infeasibility of tracking all targets with a constant factor
of the optimal quality is proven in Section IV. The tracking
algorithm is presented in Section V, and evaluated through
simulations and preliminary experiments in Sections VI
and VII respectively. Section VIII concludes the paper.

II. RELATED WORK

Target tracking is an important problem for robotics, and
has been widely studied under different settings. Spletzer
and Taylor [2] considered the problem of tracking multiple
mobile targets with multiple robots. They presented a general
solution based on particle filtering in order to choose robot
locations for the next time step that maximizes the quality
of tracking. Frew [3] studied the problem of designing a
robot trajectory, and not just the next robot location, in order
to maximize the quality of tracking a single moving target.
LaValle et al. [4] studied the problem of maintaining the
visibility of a single target from a robot for the maximum
time. Gans et al. [5] presented a controller that can keep up
to three targets in one robot’s field-of-view.

When the motion of the targets is fully known, the tracking
problem can be formulated as a kinetic facility location
problem. The goal of the stationary version is to placek
facilities (robots) given the location ofn sites (targets), so
as to minimize the maximum distance between a facility
and a site. For the kinetic version, Bespamyatnikh et al. [6]
and Durocher [7] presented approximation algorithms to
control respectively one and two mobile facilities, when the
trajectories for the sites are given. Recently, de Berg et
al. [8] presented improved approximation algorithms with
two mobile facilities when only an upper bound on the
velocities of the sites is available. However, the general
problem of kinetic facility location withk facilities is open.

In the extreme case where no prior information of the
targets is available, the multi-robot tracking problem canbe
formulated as a coverage problem [9]. Schwager et al. [10]
presented strategies to control the position and orientation
of overhead cameras mounted on aerial robots in order to
achieve equal visual coverage of the ground plane.

Unlike previous works, we study the trade-off between
quality of tracking, and the number of targets tracked. We
present an algorithm that choosestrajectories for each robot,
instead of choosing just the next best location. This algorithm
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Fig. 1. (a) Backprojection from a pixel yields a pyramid. (b) Uncertainty in
target’s estimate due to uncertain yaw angle of the robot. (c)Map showing
the area of projection for the true target at[x, y, 0] (best viewed in color).
The camera pose is estimated to have position[0, 0, 5]m and roll, pitch and
yaw angles as0 radians. Maximum image noise is±5 pixels.

can be applied to the following two versions of the problem:
tracking maximum number of targets, and maximizing the
quality of tracking. We begin by formulating the problem
and describing the sensing model.

III. PRELIMINARIES AND PROBLEM FORMULATION

Let k denote the number of robots, andn denote the total
number of targets in the environment. The position of any
robot or target is specified by their 3D coordinatesx, y, z.
The position of theith robot at timeτ is denoted byri(τ).
Let zmin be the minimum flying altitude. All robots have a
camera that faces downwards. Letφ represent the field-of-
view angle for the cameras. We assume that the robots can
communicate amongst each other at all times.

Let ti(τ) denote the position of theith target. ti(τ) is
given by the position of a reference point that the robots
can use to uniquely identify any target. For example, the
reference point can be the centroid of a colored patch or a
unique feature point on the object. All targets always move
on the ground plane, i.e.,z = 0 for all ti.

The reference point of any targetti in the field-of-view of
a robot projects to some pixel in the image. A pixel can be
backprojected to a ray in the world frame. In general, with no
other information, it is not possible to solve for the target’s
location along this ray with a single camera measurement.
However, since we assume that all targets move on the
ground plane, we can solve for the coordinates ofti.

Ideally, we can exactly estimateti given an image mea-
surement, the camera pose, and the projection matrix. In
practice, however, the following factors lead to an uncertain
estimate ofti:
(1) The backprojection of camera pixels, which have quan-
tized, integer coordinates, is not longer single ray but a
pyramid (Figure 1(a)).
(2) Pixel measurements may be corrupted by noise. If the
maximum noise is bounded by∆p pixels, we backproject
the set of pixels±∆p around the measured pixel. The true
target location is contained within the larger backprojection.
(3) The pose of the camera (or the robot) may not be
accurately known. Typically, using exteroceptive sensors
such as GPS and compass, we can bound the maximum
uncertainty in estimating the robot pose. When the robot pose

is known up to a bounded uncertain set, we can compute the
backprojection for each pose within the set (Figure 1(b)).

In general, the quality of tracking under the three sources
of errors, is a function of the relative distance and angle
between the robot and the target, as seen in Figure 1(c). For
a given true location of the target and an estimate of the robot
pose, Figure 1(c) plots the maximum area of backprojection
over all possible noisy measurements of the target, and all
possible true robot poses.

While tracking, robots only have an estimate of the true
target position. The uncertain estimate can be representedas
a set of possible target locations on the ground plane. Given
a motion model, the robots can propagate the set to obtain
predicted target position, e.g., using particle filtering [11].
The maximum area of backprojection can be computed for
each predicted target position as shown in Figure 1(c).

The quality of tracking for a given target and robot pair can
be defined as some measure of the areas of backprojection
found for a predicted target position. Letqi(rj , τ) denote
the measure for targetti and robotrj at timeτ . The quality
of tracking ti at τ , is given by the best quality of tracking
amongst all robots trackingti, i.e., qi(τ) = maxj qi(rj , τ).
Finally, the total quality of tracking atτ is given by the sum
of quality over all targetsQ(τ) =

∑

∀i qi(τ) over all targets.
Alternatively, we may also consider the bottleneck quality
over all targetsQ(τ) = mini qi(τ).

IV. I NFEASIBILITY OF TRACKING ALL TARGETS

In this section, we show the infeasibility of tracking all
targets while maintaining any constant factor approximation
of the optimal quality of tracking. We prove this by construct-
ing an instance where the two goals, track all targets and
maximize quality of tracking, conflict each other. We create
a simple instance on a line where the quality of tracking
is inversely proportional to the distance between the robot
and the target:qi(rj , τ) = 1/d(ti(τ), rj(τ)) if ti is in the
field-of-view of rj , andqi(rj , τ) = 0 otherwise. The overall
quality of tracking will be given by the bottleneck quality
Q(τ) = mini qi(τ).

We use the instantaneous optimal quality of tracking,
Q∗(τ), as the baseline for comparison.Q∗(τ) is the quality
of tracking at τ , if one were to optimallyplace all the
cameras at any location for anyτ , regardless of their loca-
tions beforeτ . The placement ofk cameras achievingQ∗(τ)
may be significantly different from the placement achieving
Q∗(τ − ǫ). There may or may not existk continuous
robot trajectories achievingQ∗(τ). Nevertheless,Q∗(τ) is
an upper bound on the quality of tracking. This raises the
question of whether we can at least maintain a constant-
factor approximation ofQ∗(τ) while tracking all targets. The
theorem given next shows this is not possible, even when the
motion of the targets is fully known.

Theorem 1 Let Q∗(τ) be the instantaneous optimal quality
of tracking at time τ . Let the maximum speed of all targets
be v. For any 0 < α ≤ 1 and β > 0, no algorithm can track
all n > k targets with at least αQ∗(τ) quality for all τ with
k ≥ 3 robots having a maximum speed of βv.



Proof: Consider Figure 2. We havek = 3 robots and
n = 4 targets on a line. The distance betweent3 and t4
is 0 at time0. Targetst1, t2 and t3 remain stationary at all
times, andt4 moves withv = 1 to the right on the line.
zmin = 1 andφ = π/4 denote the minimum flying altitude
and field-of-view angles (Section III).

Fig. 2. At τ = 0, t3 and t4 are covered by the same robot to achieve
Q∗(0), where as forτ > d12, t3 and t4 are covered by separate robots.

If we have4 targets and3 robots, then there must exist
a robot covering at least two targets at any given time. At
τ = 0, we can verify that the optimal algorithm uses separate
robots to covert1 and t2, and one robot to covert3 and
t4 (Figure 2). That is,Q∗(0) = 1. Similarly, for any time
τ > d12, optimal uses separate robots to covert3 and t4,
and same the robot to covert1 andt2 makingQ∗(τ) =

√
2

d12

.
Thus, in any optimal algorithm, of the two robots cov-

ering t1 and t2, one will switch to cover eithert3 or t4,
after τ = d12. An approximation algorithm, on the other
hand, does not necessarily have to make the same switch.
Nevertheless, by settingd12 appropriately, we will show that
any approximation algorithm will be required to make the
same switch at some time. By makingd23 sufficiently large,
we will show that such a switch is infeasible with bounded
velocity robots. The rest of the proof shows the existence of
appropriated12 andd23 values. This construction is similar to
the one used by Durocher [7] to prove the inapproximability
of the kinetick–center problem. For the case of aerial robots,
however we show how to additionally take into account non-
zerozmin andφ values.

Let ALG be any algorithm that maintains a qualityQ(τ) ≥
αQ∗(τ). If we setd12 >

√
2

α
, then ALG cannot use the same

robot to covert1 and t2 at time τ = 0. Else,Q(0) < α =
αQ∗(0) which violates the approximation guarantee. Hence,
ALG uses separate robots to covert1 and t2 at time0.

Similarly, we can show that for any timeτ > d12

α
, ALG

must use separate robots to covert3 and t4. ElseQ(τ) <√
2

τ
< αQ∗(τ) violating the approximation guarantee.

One of the two separate robots, sayr, covering t1 and
t2 initially, must cover eithert3 and t4 at time τ > d12

α
. In

time τ , r must travel at leastd23− 1

α
− d12√

2α
distance. Here,

1

α
and d12√

2α
come from the condition thatQ(0) ≥ α and

Q(τ) ≥ α
√
2

d12

.
Consider a timeτ = 2d12

α
. At this time,r covers a maxi-

mum distance ofβτ = β 2d12

α
. Setd23 > β 2d12

α
+ 1

α
+ d12√

2α
. r

cannot simultaneously cover at least one oft1 or t2 at time0,
and at least one oft3 or t4 at timeτ , which is a contradiction.
Hence, ALG cannot maintain anα approximation ofQ∗ for
all times.

The instance created in the proof above uses minimum
flying altitude zmin = 1 and camera field-of-view angle
φ = π/4. We can create corresponding instances for any
other values of these parameters. In light of Theorem 1, we
drop the requirement that all targets must always be tracked.
Instead we focus on the case when the robots are allowed to
track a fraction of all targets.

V. 1/2 APPROXIMATION ALGORITHM

In this section, we present the main algorithm to maximize
the number of targets tracked, or maximize the quality of
tracking. We divide the time into rounds of fixed duration.
We consider the scenario where using measurements from
previous rounds, the robots are able to predict the motion
of the targets for the current round. For each robot, we
create a set ofm candidate trajectories that can be followed
for the current round. For example, these trajectories can
be generated using existing grid-based or sampling-based
methods [12]. Our goal is to choose a trajectory for each
of the robots for the current round.

Figure 3 shows a simple instance with two robots, and
three candidate trajectories each robot can follow. The cam-
era footprint along two such trajectories as well as the set
of targets covered by these trajectories are shown. Note that
the trajectories need neither be restricted to any discretized
grid, nor have uniform length or uniform speed.

Let Rj(x) denote the set of targets predicted to be covered
by xth trajectory followed byjth robot. We create a set
system(X,R) whereX is the set of all targets andR is
a collection of allRj(x) sets. We group sets inR into k
collections, one per robot. Each group containsm sets each.
That is,

R = { R1(1), . . . , R1(m)
︸ ︷︷ ︸

candidate trajectories forr1

, . . . , Rk(1), . . . , Rk(m)
︸ ︷︷ ︸

candidate trajectories forrk

} (1)

A valid assignment of trajectories can be represented by a
map,σ : [1, . . . , k] → [1, . . . ,m], indicating trajectoryσ(j)
(i.e., the setRj(σ(j))) is chosen for thejth robot. We can
remove a target from the setRj(x) if it does not satisfy a
given minimum quality of tracking requirement.

A. Maximizing Number of Targets

First consider the case of maximizing the number of
targets tracked byk robots. This problem is a generalization
of the maximum coverage problem [13] stated as:choose k
subsets to maximize the cardinality of the union of all subsets.
In our case, we cannot arbitrarily pickk subsets since they
must belong to distinct groups (i.e., the same robot cannot
be assigned to two trajectories).

The maximum coverage problem, under group constraints,
can be stated as:choose k subsets of R given by a map,



Fig. 3. At the start of each round, we have a set ofm candidate trajectories
per robot. The trajectories may be non-uniform and of varyingspeeds. Using
the predicted motion of the targets, we can determine which targets will be
covered for a given trajectory and the corresponding quality of tracking.

σ : [1, . . . , k]→ [1, . . . ,m] such that the union of all subsets
is maximized. The constraint that the same robot cannot
be assigned to two trajectories is enforced by requiring the
output be a mapσ. This problem is known as the Maximum
Group Coverage (MGC) problem. Chekuri and Kumar [1]
proved that the greedy algorithm yields a1/2 approximation
for MGC. Their algorithm can directly be applied to track
half the number of targets as an optimal algorithm. Our
contribution is to extend the analysis to the weighted case.

B. Maximizing Quality of Tracking

For the case of maximizing the overall quality of tracking,
we formulate a weighted version of MGC. Letqi(Rj(x)) be
the quality of tracking targetti with robot rj following the
xth trajectory.qi(Rj(x)) can represent the expected quality
of tracking as described in Section III. The weight of any
setRj(x) ∈ R is given by the sum of qualities of all targets
tracked byRj(x). The objective is to maximize the sum of
quality of tracking for all targets1.

The greedy algorithm for the unweighted MGC can be
modified for the weighted setting (Algorithm 1). In each
iteration, we choose a setRj(x) greedily that maximizes
the total weight. We addRj(x) to the solution, and discard
all other sets belonging to the same group, i.e., all other
candidate trajectories for the same robotrj . This proceeds
until we have chosen a trajectory for all robots.

Algorithm 1: Greedy Weighted MGC Algorithm

1 C ← ∅, I ← ∅
2 for p = 1 to k do
3 Find Ri(x) such thatQ(Ri(x) ∪ C) is greatest, and

i 6∈ I
4 σ(i)← x
5 C ← C ∪Ri(x)
6 I ← I ∪ {i}
7 end
8 Returnσ

Theorem 2 Algorithm 1 gives a (1/2 − ǫ) approximation
for the weighted MGC problem for any ǫ > 0 in polynomial
time.

1The bottleneck version of maximizing the minimum quality of tracking
over all targets cannot be applied since not all targets are tracked.

The analysis by Chekuri and Kumar [1] for the unweighted
case can be modified for this weighted case. We present
our full proof in the accompanying technical report [14],
for completeness.

We now evaluate the greedy algorithm through simulations
and preliminary experiments.

VI. SIMULATIONS

In this section, we describe our implementation of the
algorithm, and evaluate its performance through simulations.
We carried out the simulations using the SwarmSimX sim-
ulation environment [15]. SwarmSimX is a real-time multi-
robot simulator designed for modeling rigid-body dynamics
in 3D environments. Models of the MikroKopter Quadrotor2

were used to simulate the motion of the robots.
For simulating the targets, we generated random trajecto-

ries as follows. Each target randomly chooses a speed and
direction and moves along this direction for a random interval
of time, drawn from a normal distribution. This class of
trajectories is motivated by wildlife monitoring applications,
where foraging animals have been found to follow such
mobility models [16]. The mean and standard deviation of
the normal distribution were set to10 s and1 s, respectively
in the simulations.

The target trajectories were restricted to20× 20m square
on the ground plane. The initial locations of all targets were
chosen uniformly at random near the robot locations. A
moving average filter of window length5 running at10Hz
was used to estimate the position and velocity of the observed
targets for the next planning round. A measurement for a
target was obtained only if it was contained within the field-
of-view of some robot.

For each robot, we created the following set of candidate
trajectories: (a) stay in place, and (b) radially symmetric
along8 horizontal directions with a speed of0.5m/s. Thus,
each robot could choose from a set of9 trajectories in a
round. Each round was set to a duration of2 s. A trial
consisted of50 rounds.

Figures 4(a) and 4(b) show the effect of the number of
robots and the maximum speed of the targets. As expected,
the number of tracks and quality of tracking increases as
the number of robots increase. Increase in the maximum
speeds of the targets has the effect of spreading them further
apart, which further reduces the number of targets that can
be tracked. For these trials, the height of the robots was
fixed to 3.5m (i.e., the size of the camera footprint was
fixed). Figure 5 shows the total number of targets tracked
in one representative trial as a function of the time. Once
the robots have lost track of a particular target, they do no
receive any position information about that target. Thus, they
cannot predict the future locations for a lost target, unless it
appears again in the field-of-view of some robot.

For the simulations, we did not incorporate the uncer-
tainty due to sensing. In the next section, we validate the
uncertainty model and present results from a preliminary
experiment using4 aerial robots.

2http://mikrokopter.de
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Fig. 4. (a) Number of targets covered out of50 targets in the environment.
(b) The average quality of tracking. The weightqi(Rj(x) is computed as
the inverse of the minimum distance between the target and the robot along
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VII. E XPERIMENTS

In order to validate our sensing model and the algorithm,
we performed trials on an indoor setup (Figure 6). The setup
consisted of four quadrotors controlled using the TeleKyb
framework [17]. All robots communicated directly with a
central computer via a wireless XBee link. Each robot was
fitted with a downward facing camera. The cameras streamed
the live images wirelessly directly to the central computer.
An indoor motion capture system was used for position
feedback, while orientation is stabilized onboard.

A. Validating the Sensing Model

We first conducted trials to validate the sensing model
presented in Section III. A robot was programmed to fly
along a given trajectory at heights of1m and 1.5m. The
motion of the robot was smoothed, so as to ensure that the
roll and pitch angles remained close to zero. Colored balls
were placed on the ground (Figure 6). The pink and the
yellow colored balls were fixed to motion capture markers
to record their ground truth locations. All cameras were
calibrated to obtain they camera parameters.

Figure 7 shows an image obtained using the on-board
camera, along with the estimated and true locations of the
balls. The backprojection area was computed considering±5
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Fig. 5. The number of targets tracked in one trial. As the targets spread the
total number of targets that can be tracked decreases. Once a target moves
out of the field-of-view, the robots cannot predict their future locations.

Fig. 6. Experimental setup. Each robot is fitted with a downward facing
wireless camera. All robots directly communicate with a central computer.

maximum measurement error in pixels,±5 cm maximum
error in robot position,±π/18 radians maximum error in
the yaw angle, and±π/48 radians maximum error in the
roll and pitch angles. The average area of backprojection
(for 50 images which contained either the yellow or pink
balls) was0.46m2. The average error between the centroid
of the projected area and the true location was0.28m, with
a standard deviation of0.3m.

B. Tracking Experiment

We implemented the greedy algorithm on the four robots.
The controller on-board the robot was set to operate the
robots smoothly in near-hovering mode at an average speed
0.5m/s. Each round lasted for3 seconds. The pink and
yellow balls were moved manually (Figure 6). For this trial,
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Fig. 7. Validating the sensing model. (a) On-board camera image. (b) The
true target location (colored circles) in the global frame, and the estimated
locations using the method described in Section III.
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Fig. 8. Start (left figures) and end (right figures) of two rounds. Dashed
trail shows the locations of the robots and targets in the preceding 5 secs.

the locations of the targets were obtained from the motion
capture system. The robots used a moving average filter
to predict the locations of the targets, based on previous
measurements. A radius of

√
2m was found empirically to

correspond to the camera footprint when the robots operated
at a height of2.5m. The robots had one of the four grid
neighbors in thez = 2.5m plane as candidate trajectories.

Figure 8 shows the locations of the robots and the targets
before and after two key rounds: at times110 s and119 s.
The two rounds show events when the robots predicted that
the target would move out of the coverage area in the next
round. Hence, as an outcome of the greedy algorithm, the
robots chose corresponding trajectories in order to continue
to track the targets.

The sensing validation and tracking trials presented here
demonstrate a proof-of-concept implementation of the com-
ponents of our system. Our ongoing efforts are directed to-
wards performing large scale experiments with this system.

VIII. C ONCLUSION

In this paper, we studied a visual tracking problem in
which a team of robots equipped with cameras are charged
with tracking the locations of targets moving on the ground.
We discussed the sources of uncertainty that affect the quality
of estimating the locations of ground targets using overhead
images. We showed the infeasibility of tracking all targets
while maintaining the optimal quality of tracking, or any
factor of the optimal quality, at all times. We then formulated
the target tracking problem where the goal is to assign
trajectories for each robot in order to maximize the quality
of tracking. When we are given a set of candidate robot
trajectories, we showed how the problem can be posed as a
combinatorial optimization problem. A simple and easy-to-
implement greedy algorithm applied to this problem yields
a 1/2 approximation. Finally, we presented results from sim-
ulations and preliminary experiments validating the sensing

model and demonstrating the feasibility of implementing the
algorithm. Future work includes investigating the problem
under inter-robot communication constraints, and conducting
larger scale experimental validation.
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