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Abstract— We study the problem of tracking mobile targets problem with provable performance guarantees. We evaluate

using a team of aerial robots. Each robot carries a camera the algorithm in simulations and preliminary experiments
to detect targets moving on the ground. The overall goal is to with an indoor platform using four aerial robots.

plan for the trajectories of the robots in order to track the most Th t of th ) ized foll We bedgi
number of targets, and accurately estimate the target locations € rest or the paper 1S organized as follows. Vve begin

using the images. The two objectives can conflict since a robot With the related work in Section II. The problem setup and a
may fly to a higher altitude and potentially cover a larger discussion of the sensing quality are presented in Sedtion |
number of targets at the expense of accuracy. The infeasibility of tracking all targets with a constanttar

We start by showing that & > 3 robots may not be able ¢ the gptimal quality is proven in Section IV. The tracking

to track all n targets while maintaining a constant factor . . . .
approximation of the optimal quality of tracking at all times. algorithm is presented in Section V, and evaluated through

Next, we study the problem of choosing robot trajectories to Simulations and preliminary experiments in Sections VI
maximize either the number of targets tracked or the quality of ~and VII respectively. Section VIII concludes the paper.
tracking. We formulate this problem as the weighted version of

a combinatorial optimization problem known as the Maximum Il. RELATED WORK

Group Coverage (MGC) problem. A greedy algorithm yields a Lo . .
1/2 approximation for the weighted MGC problem. Finally, Target tracking is an important problem for robotics, and

we evaluate the algorithm and the sensing model through has been widely studied under different settings. Spletzer

simulations and preliminary experiments. and Taylor [2] considered the problem of tracking multiple
mobile targets with multiple robots. They presented a ganer
. INTRODUCTION solution based on particle filtering in order to choose robot

We study the problem of tracking multiple moving targetdocations for the next time step that maximizes the quality
using aerial robots. We consider the scenario where camefstracking. Frew [3] studied the problem of designing a
that face downwards are mounted on the robots to trac¢kbot trajectory, and not just the next robot location, idesr
targets moving on the ground plane. A robot can potentiallip maximize the quality of tracking a single moving target.
track more targets by flying to a higher altitude, thus inLaValle et al. [4] studied the problem of maintaining the
creasing its camera footprint. However, this may reduce thasibility of a single target from a robot for the maximum
quality of the view due to the increased distance betwedime. Gans et al. [5] presented a controller that can keep up
the cameras and the targets. There is a trade-off betwetnthree targets in one robot’s field-of-view.
the number of targets tracked and the corresponding quality When the motion of the targets is fully known, the tracking
of tracking. We investigate this trade-off and present aproblem can be formulated as a kinetic facility location
approximation algorithm for multi-target tracking. problem. The goal of the stationary version is to pldce

We start by showing that it may not always be possibléacilities (robots) given the location of sites (targets), so
to track all targets while always maintaining the optimahs to minimize the maximum distance between a facility
quality of tracking (or any factor of the optimal qualityyem and a site. For the kinetic version, Bespamyatnikh et al. [6]
if the targets’ motion is fully known. Hence, we focus onand Durocher [7] presented approximation algorithms to
the following two variants: maximize the number of targetsontrol respectively one and two mobile facilities, whea th
tracked subject to a desired tracking quality per targed, arirajectories for the sites are given. Recently, de Berg et
maximize the sum of quality of tracking for all targets.al. [8] presented improved approximation algorithms with
The two problems can be formulated as the unweightevo mobile facilities when only an upper bound on the
and weighted versions of the Maximum Group Coverageelocities of the sites is available. However, the general
Problem (MGC). A simple greedy approach provides a 1/@roblem of kinetic facility location with: facilities is open.
approximation to unweighted MGC [1]. We show that the In the extreme case where no prior information of the
approximation guarantee also holds for the weighted catargets is available, the multi-robot tracking problem oan
which allows a practical solution to the trajectory plammin formulated as a coverage problem [9]. Schwager et al. [10]

presented strategies to control the position and oriemtati
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is known up to a bounded uncertain set, we can compute the
backprojection for each pose within the set (Figure 1(b)).
In general, the quality of tracking under the three sources

» of errors, is a function of the relative distance and angle
N W between the robot and the target, as seen in Figure 1(c). For
e a given true location of the target and an estimate of thetrobo

pose, Figure 1(c) plots the maximum area of backprojection
o over all possible noisy measurements of the target, and all
@ ®) possible true robot poses.
Fig. 1. (a) Backprojection from a pixel yields a pyramid. (hjdgrtainty in While tracking, robots only have an estimate of the true
tﬁfget’s eStfimfotZ gtiuc?nt?olrﬂt"ﬁgfttﬁjg ¥;Weﬁtl{§|e %‘i t(*;)z Sf??/?g\l/'vgg isnhg\(f)vli(r)'g target position. The uncertain estimate can be represasted
EI'r?eacrfflﬁ(Srappojse is estimated to havg post[t%ﬁ, 5] m and roll, pitch and 2 set (_)f possible target locations on the ground plane. lee_n
yaw angles a$ radians. Maximum image noise 185 pixels. a motion model, the robots can propagate the set to obtain
predicted target position, e.g., using particle filterirdd.][
The maximum area of backprojection can be computed for
can be applied to the following two versions of the problemeach predicted target position as shown in Figure 1(c).
tracking maximum number of targets, and maximizing the The quality of tracking for a given target and robot pair can
quality of tracking. We begin by formulating the problembe defined as some measure of the areas of backprojection

and describing the sensing model. found for a predicted target position. Lef(r;,7) denote
the measure for targef and robotr; at timer. The quality
1. PRELIMINARIES AND PROBLEM FORMULATION of tracking¢; at 7, is given by the best quality of tracking

Let k& denote the number of robots, anddenote the total amongst all robots tracking, i.e., ¢;(7) = max; g;(r;, 7).
number of targets in the environment. The position of anfinally, the total quality of tracking at is given by the sum
robot or target is specified by their 3D coordinates;, z.  of quality over all targetg)(7) = >, ¢:(7) over all targets.
The position of thei** robot at timer is denoted by-;(7).  Alternatively, we may also consider the bottleneck quality
Let znin be the minimum flying altitude. All robots have aover all targets)(7) = min; ¢;(7).
camera that faces downwards. Letrepresent the field-of- V.
view angle for the cameras. We assume that the robots can
communicate amongst each other at all times.

I NFEASIBILITY OF TRACKING ALL TARGETS
In this section, we show the infeasibility of tracking all

Let t;(7) denote the position of the/" target.t;(r) is tafr%ets wh|le|ma|r|1_ta|n|fng aE_y co\rllitant factr?_r r:\)pproxmratl
given by the position of a reference point that the robot the optimal quality of tracking. WWe prove this by construc

can use to uniquely identify any target. For example, thi'9 gn-mstanc.e where the two gqals, track all targets and
reference point can be the centroid of a colored patch or'gaximize .quahty of trackl_ng, conflict each other. we Cre‘f’“e
unique feature point on the object. All targets always mov@ SIMPI€ instance on a line where the quality of tracking
on the ground plane, i.ez — 0 for all . Is inversely proportional to the distance between the robot
The reference point of any targgtin the field-of-view of a_m% thfe _targe;'qi(rj ’Td) =1/ d(ti(g)’%m)_'f t’i_l_;]s in the”
a robot projects to some pixel in the image. A pixel can pdeld-of-view of r;, ant qz'(rj’.T) =V oherwise. 1he overa
backprojected to a ray in the world frame. In general, with n§uality of tracking will be given by the bottleneck quality
other information, it is not possible to solve for the tatget @(7) = min; ¢i(7).

location along this ray with a single camera measuremen *We use the mst_antaneous opt_|mal* q“?"ty of tra<_:k|ng,
However, since we assume that all targets move on t (), as the baseline for compariso-(r) is the quality

ground plane, we can Solve for the coordnates,of 2 BECR 0 L RS RS D el loca
Ideally, we can exactly estimatg given an image mea- y ny reg

surement, the camera pose, and the projection matrix. Erj):s;) efoiregi'ﬁTgﬁtF lﬁ;;nr(ea:: ?fofna?]erafaizme\g?g E:i-e)vin
practice, however, the following factors lead to an underta y be sighiiicantly ep ent ac 9

estimate oft.- Q*(r — ¢). There may or may not exisk continuous
(1) The baczkprojection of camera pixels, which have quarfOPO! rajectories achieving” (7). Nevertheless()"(r) is
tized, integer coordinates, is not longer single ray but gn upper bound on the quality of tracking. This raises the
pyrar,ni d (Figure 1(a)) ' question of whether we can at least maintain a constant-

fﬁctor approximation of)*(7) while tracking all targets. The

(2) Pixel measurements may be corrupted by noise. If t . . .
. o ; . eorem given next shows this is not possible, even when the
maximum noise is bounded bixp pixels, we backproject . .
motion of the targets is fully known.

the set of pixelstAp around the measured pixel. The true
target location is contained within the larger backproggtt Theorem 1 Let Q*(7) be the instantaneous optimal quality
(3) The pose of the camera (or the robot) may not bef tracking at time 7. Let the maximum speed of all targets
accurately known. Typically, using exteroceptive sensorse v. For any 0 < a <1 and 5 > 0, no algorithm can track
such as GPS and compass, we can bound the maximahn > k targets with at least aQ*(7) quality for all 7 with
uncertainty in estimating the robot pose. When the robot poge> 3 robots having a maximum speed of Sv.



Proof: Consider Figure 2. We havie = 3 robots and mum distance ofr = 62‘%. Setdys > ﬂ%%JréJr dma. r
n = 4 targets on a line. The distance betwegnand ¢,  cannot simultaneously cover at least one06r ¢, at time0,
is 0 at time0. Targetst;,t, andts remain stationary at all and at least one df, or ¢, at timer, which is a contradiction.
times, andt, moves withv = 1 to the right on the line. Hence, ALG cannot maintain am approximation of@* for
Zmin = 1 and ¢ = 7 /4 denote the minimum flying altitude all times.

and field-of-view angles (Section IlI). [ ]
The instance created in the proof above uses minimum
I T2 T3 flying altitude z,;, = 1 and camera field-of-view angle
1 Q" (r=0)=1 ¢ = w/4. We can create corresponding instances for any
S A S other values of these parameters. In light of Theorem 1, we
t d;» t2 do; bs b4 drop the requirement that all targets must always be tracked
Instead we focus on the case when the robots are allowed to
T, track a fraction of all targets.
diz . _v 2 T3
Ve Q7 (r>di2) = 335 . V. 1/2 APPROXIMATION ALGORITHM
- 4—1—4 - —»—1—1 In this section, we present the main algorithm to maximize
t; d,s ta oy ts dyy ty the number of targets tracked, or maximize the quality of

tracking. We divide the time into rounds of fixed duration.
Fig. 2. AtT = 0, t5 andts are covered by the same robot to achieveVV€ consider the scenario where using measurements from
Q*(0), where as forr > dy2, t3 andty are covered by separate robots. previous rounds, the robots are able to predict the motion
of the targets for the current round. For each robot, we
If we have4 targets and3 robots, then there must exist create a set ofn candidate trajectories that can be followed
a robot covering at least two targets at any given time. Afor the current round. For example, these trajectories can
T = 0, we can verify that the optimal algorithm uses separatee generated using existing grid-based or sampling-based
robots to covert; andt,, and one robot to covet; and methods [12]. Our goal is to choose a trajectory for each
t, (Figure 2). That isQ*(0) = 1. Similarly, for any time of the robots for the current round.
T > dq, optimal uses separate robots to coverand ¢4, Figure 3 shows a simple instance with two robots, and
and same the robot to cover andt, makingQ*(7) = %_ three candidate trajectories each robot can follow. The-cam
Thus, in any optimal algorithm, of the two robots cov-era footprint along two such trajectories as well as the set
ering t; and t,, one will switch to cover eithets or ¢y, of targets covered by these trajectories are shown. Note tha
after - = dy». An approximation algorithm, on the other ~ the trajectories need neither be restricted to any digeeti
hand, does not necessarily have to make the same switch. ~ grid, nor have uniform length or uniform speed.
Nevertheless, by setting;, appropriately, we will show that  Let i;(x) denote the set of targets predicted to be covered
any approximation algorithm will be required to make thedy =" trajectory followed by;*" robot. We create a set
same switch at some time. By makirdg; sufficiently large, System(X,R) where X is the set of all targets an® is
we will show that such a switch is infeasible with bounded collection of allR;(z) sets. We group sets iR into &
velocity robots. The rest of the proof shows the existence @Pllections, one per robot. Each group containsets each.
appropriatel;» anddss values. This construction is similar to That is,

the one used by Durocher [7] to prove the inapproximability
e : R={Ri(1),...,Ri(m),..., Ri(1),...,Rp(m 1
of the kinetick—center problem. For the case of aerial robots, {8 1(m) k() Km)} @)
however we show how to additionally take into account non- candidate trajectories for, candidate trajectories for,
Z€ero zyiy and¢ values. A valid assignment of trajectories can be represented by a

Let ALG be any algorithm that maintains a quai(7) >  map,o : [1,...,k] — [1,...,m], indicating trajectoryo(j)
a@Q*(1). If we setdyo > g then ALG cannot use the same(i.e., the setR;(o(j))) is chosen for thej*" robot. We can
robot to covert; andt, at timer = 0. Else,Q(0) < o = remove a target from the sét;(z) if it does not satisfy a
a@Q*(0) which violates the approximation guarantee. Hencegiven minimum quality of tracking requirement.

ALG uses separate robots to covgrandi, at time0.

Similarly, we can show that for any time > 42, ALG A. Maximizing Number of Targets

must use separate robots to covgrand t4. Else Q(7) < First consider the case of maximizing the number of
@ < aQ*(r) violating the approximation guarantee. targets tracked by robots. This problem is a generalization

One of the two separate robots, saycoveringt; and ©f the maximum coverage problem [13] stated @mose k
to initially, must cover eithet; andt, at timer > %2_ In Subsetsto maximize the cardinality of the union of all subsets.

time 7, r must travel at leasty; — 2 — \‘}152& distance. Here, I OLJ[erc?se, \{{ve (;:_a?nott arbitraril(;_/ pidi(hsubsets sint;:et they i

1 dya . must belong to distinct groups (i.e., the same robot canno

=~ and ﬁ%come from the condition thaf)(0) > « and be assigned to two trajectories).

Q(r) > Qg The maximum coverage problem, under group constraints,
Consider a timer = 2‘% At this time,r covers a maxi- can be stated ashoose k& subsets of R given by a map,




Ry (2) The analysis by Chekuri and Kumar [1] for the unweighted

’%’ Ri(3) case can be modified for this weighted case. We present
P y N our full proof in the accompanying technical report [14],
“Ri(1) L iR for completeness.
32“)“\ We now evaluate the greedy algorithm through simulations
M and preliminary experiments.
. Ra(3)

VI. SIMULATIONS

Fig. 3. At the start of each round, we have a setotandidate trajectories In this section, we describe our implementation of the

pher rtizgfétzfée n??ii,‘ﬁ%ﬁié"t?r t;etsn?,rvléugggmtz?g] gevsvrﬁﬁgtdai& illJISti]gg algorithm, and evaluate its performance through simutatio

E:o?lgred for a given trajectory gnd the corresponding qualittracking. We ,Camed_ out the simulations us!ng the Swarm8|mx Slm'
ulation environment [15]. SwarmSimX is a real-time multi-
robot simulator designed for modeling rigid-body dynamics

o:[1,...,k] = [1,...,m] such that the union of all subsets in 3D environments. Models of the MikroKopter Quadrdtor

is maximized. The constraint that the same robot cannotvere used to simulate the motion of the robots.

be assigned to two trajectories is enforced by requiring the For simulating the targets, we generated random trajecto-

output be a majpr. This problem is known as the Maximum ries as follows. Each target randomly chooses a speed and

Group Coverage (MGC) problem. Chekuri and Kumar [1Hirection and moves along this direction for a random irdgerv

proved that the greedy algorithm yields &2 approximation of time, drawn from a normal distribution. This class of

for MGC. Their algorithm can directly be applied to tracktrajectories is motivated by wildlife monitoring applitats,

half the number of targets as an optimal algorithm. Ouwhere foraging animals have been found to follow such

contribution is to extend the analysis to the weighted casemobility models [16]. The mean and standard deviation of

_ : . the normal distribution were set td s and1 s, respectively

B. Maximizing Quality of Tracking in the simulations.

For the case of maximizing the overall quality of tracking, The target trajectories were restricted2tdx 20 m square
we formulate a weighted version of MGC. Lg{(R;(z)) be  on the ground plane. The initial locations of all targetsaver
the quality of tracking target; with robot r; following the  chosen uniformly at random near the robot locations. A
' trajectory.q;(R;(x)) can represent the expected qualitymoving average filter of window length running at10 Hz
of tracking as described in Section Ill. The weight of anyyas used to estimate the position and velocity of the observe
setR;(xz) € R is given by the sum of qualities of all targetstargets for the next planning round. A measurement for a
tracked byR;(x). The objective is to maximize the sum of target was obtained only if it was contained within the field-
quality of tracking for all targets of-view of some robot.

The greedy algorithm for the unweighted MGC can be For each robot, we created the following set of candidate
modified for the weighted setting (Algorithm 1). In eachtrajectories: (a) stay in place, and (b) radially symmetric
iteration, we choose a set;(z) greedily that maximizes along8 horizontal directions with a speed 6f5 m/s. Thus,
the total weight. We add?;(x) to the solution, and discard each robot could choose from a set ®ftrajectories in a

all other sets belonging to the same group, i.e., all othgbund. Each round was set to a duration 2é. A trial
candidate trajectories for the same robgt This proceeds cgonsisted of50 rounds.

until we have chosen a trajectory for all robots. Figures 4(a) and 4(b) show the effect of the number of
robots and the maximum speed of the targets. As expected,
Algorithm 1: Greedy Weighted MGC Algorithm the number of tracks and quality of tracking increases as
10«0, 1«0 the number of robots increase. Increase in the maximum
2 for p=1tok do speeds of the targets has the effect of spreading them furthe
3 Find R;(z) such thatQ(R;(z) U C) is greatest, and apart, which further redupes the number of targets that can
i T be tracked. For these trials, the height of the robots was
4 oli) « x fixed to 3.5m (i.e., the size of the camera footprint was
5 C + CUR;(x) fixed). Figure 5 shows the total number of targets tracked
6 I+ TU{i} in one representative trial as a function of the time. Once
7 end the robots have lost track of a particular target, they do no
s Returno receive any position information about that target. Thhsyt

cannot predict the future locations for a lost target, unies
appears again in the field-of-view of some robot.

For the simulations, we did not incorporate the uncer-
tainty due to sensing. In the next section, we validate the
uncertainty model and present results from a preliminary
experiment usingt aerial robots.

Theorem 2 Algorithm 1 gives a (1/2 — €) approximation
for the weighted MGC problem for any € > 0 in polynomial
time.

1The bottleneck version of maximizing the minimum quality of kiag
over all targets cannot be applied since not all targetsracked. 2http://mikrokopter.de
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Fig. 6. Experimental setup. Each robot is fitted with a dowmimacing
(b) wireless camera. All robots directly communicate with a cértomputer.

Fig. 4. (a) Number of targets covered outif targets in the environment.
(b) The average quality of tracking. The weight R;(x) is computed as . . . .
the inverse of the minimum distance between the farget ancotiwt along  Maximum measurement error in pixel&5 cm maximum

Rj(). error in robot position 47 /18 radians maximum error in
the yaw angle, and:7/48 radians maximum error in the
roll and pitch angles. The average area of backprojection

VII. EXPERIMENTS (for 50 images which contained either the yellow or pink

In order to validate our sensing model and the algorithnPalls) was0.46 m*. The average error between the centroid
we performed trials on an indoor setup (Figure 6). The setujf the projected area and the true location Wwas m, with
consisted of four quadrotors controlled using the TeleKy@ standard deviation df.3m.
framework [17]. AI! robot_s communica’Fed directly with apg Tracking Experiment
central computer via a wireless XBee link. Each robot was , i
fitted with a downward facing camera. The cameras streame We implemented the greedy algorithm on the four robots.

the live images wirelessly directly to the central computerT e controller on-board the robot was set to operate the

An indoor motion capture system was used for positior':lObOtS smoothly in near-hovering mode at an average speed
feedback, while orientation is stabilized onboard. 0.5m/s. Each round lasted fo§ seconds. The pink and

yellow balls were moved manually (Figure 6). For this trial,
A. Validating the Sensing Model

We first conducted trials to validate the sensing model
presented in Section Ill. A robot was programmed to fly
along a given trajectory at heights @fm and 1.5m. The
motion of the robot was smoothed, so as to ensure that the
roll and pitch angles remained close to zero. Colored balls
were placed on the ground (Figure 6). The pink and the
yellow colored balls were fixed to motion capture markers
to record their ground truth locations. All cameras were
calibrated to obtain they camera parameters. @ (b)

Figure 7 ShOW,S an Imag,e obtained using the_ on_boaligg. 7. Validating the sensing model. (a) On-board camera im@yelhe
camera, along with the estimated and true locations of thgie target location (colored circles) in the global framed she estimated
balls. The backprojection area was computed considekifig locations using the method described in Section IIl.

Area =0.76




=110 secs =113 secs

N model and demonstrating the feasibility of implementing th
- KN oo B g algorithm. Future work includes investigating the problem
: : . under inter-robot communication constraints, and coridgct
% ; . o ", " larger scale experimental validation.
: P : N 9 P
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