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Abstract— The art gallery problem is a classical sensor
placement problem that asks for the minimum number of
guards required to see every point in an environment. The
standard formulation does not take into account self-occlusions
caused by a person or an object within the environment.
Obtaining good views of an object from all orientations is
important for surveillance and visual tracking applications. We
study the art gallery problem under a constraint, termed △-
guarding, that ensures that all sides of any convex object are
always visible in spite of self-occlusion.

Our contributions in this paper are two-fold: we first prove
that Ω(

√
n) guards are always necessary for△-guarding the

interior of a simple polygon having n vertices. Next, we study
the problem of △-guarding a set of line segments connecting
points on the boundary of the polygon. This is motivated by
applications where an object or person of interest can only move
along certain paths in the polygon. We present a constant factor
approximation algorithm for this problem – one of the few such
results for art gallery problems.

I. I NTRODUCTION

Consider the basic task of placing cameras in an environ-
ment in order to ensure that every point in the environment
is seen from at least one camera. By carefully choosing
their locations, the total number of cameras required can be
minimized. This is known as the art gallery problem, and has
been the area of active research for over three decades [1].

The art gallery problem asks for the minimum number of
cameras required to see all points in ann–sided polygon.
Various bounds have been established on the minimum
number of guards required for different classes of poly-
gons [1], [2]. In particular,⌊n/3⌋ guards are always sufficient
and sometimes necessary for guarding ann–sided simple
polygon without holes.

O’Rourke and Supowit [3] proved that the problem of
determining the minimum number of guards required to
cover a given polygon is NP-hard. Efrat and Har-Peled [4]
presented a polynomial time algorithm to guard a polygon
using at mostO(OPTlogOPT) guards, where OPT is the
optimal number of guards. Nilsson [5] presented a constant
factor approximation algorithm to guard the interior of
any monotone polygon. No constant factor approximation
algorithm for guarding general polygons is known.

The classical art gallery problem only requires that each
point in the environment to be visible from a camera. How-
ever, for many applications visibility along is not sufficient.
Obtaining a good view is equally important. For example,
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consider a video conferencing system where a person can
move within a conference room. If the room is convex, then
a single camera is sufficient to guarantee visibility (Figure1).
However, if the person stands with his or her back to the only
camera, no good view of the person will be available. Our
goal will be to place cameras such that any person or object
will be seen from all orientations, in spite of self-occlusion.

Fig. 1. The standard polygon guarding problem ensures that every point
in the environment is seen from at least one guard. However, due to self-
occlusions, some part of a person may not be visible. We study the polygon
guarding problem in the presence of self-occlusions.

We use this as motivation to study the problem of placing
the minimum number of cameras in order to see all faces
of any convex object moving in the environment. Smith and
Evans [6] introduced this problem, and formalized it as the
following △-guarding condition:

Definition 1 A point p is said to be△-guardedby a set
of guardsG, if p is visible from a non-empty set of guards
G′ ⊆ G andp lies in the convex hull ofG′. A simple polygon
P is said to be△-guardedby a set of guardsG, if every
point p ∈ P is △-guarded byG.

Note that the guards themselves need not be visible from
each other.

Smith and Evans [6] proved that deciding ifk vertex
guards can△-guard a simple polygon is NP-hard. Efrat
et al. [7] presented a randomized algorithm based on
[8] that when applied to the△-guarding problem yields
a O(logOPT)–approximation for polygons without holes.
Since the△-guarding constraint generalizes the simple vis-
ibility requirement for the art gallery problem, we expect to
place more cameras. In this paper, our first contribution is to
show thatΩ(

√
n) guards arealwaysnecessary to△-guard

any simple polygon withn vertices (with or without holes).
The large lower bound comes as a result of having to

△-guard the entire polygon. In many applications such as
surveillance or mobile video conferencing, we may not need
to △-guard the entire polygon. Instead,△-guarding may
be required only for a set of paths a person or object
of interest is likely to take within the environment. With
this as motivation, we study the problem of placing the
fewest number of guards to△-guard a set of line segments



between points on the boundary of a polygon. For example,
these points can correspond to entry and exit points in the
environment, the line segments being paths likely to be taken
by a person. Our goal is to△-guard at least one point on
each line segment, thus guaranteeing that independent of the
orientation, all sides of the person will be seen at some
point along the path. Our second contribution is to present
an approximation algorithm that places at most 12 times as
many guards as an optimal algorithm. In addition to being of
practical interest, our result is one of the few constant factor
approximation algorithms for an art gallery problem.

II. L OWER BOUND ON THE NUMBER OF GUARDS FOR

△-GUARDING A SIMPLE POLYGON

In this section, we prove a lower bound on the number
of guards necessary to△-guard any simple polygonP . The
definition of △-guarding allows the degenerate cases of a
point being△-guarded by two visible guards if it lies on the
segment joining them. The next statement follows from the
definition of△-guarding and will be useful in the analysis.

Corollary 1 A pointp is△-guarded if and only if any closed
half-plane drawn with the line passing throughp contains a
guard visible fromp.

For establishing the lower bound, we will prove necessary
conditions on where the guards must be placed. We first
define an edge extension as follows. Extend an edge ofP
from either endpoint until it reaches the boundary of the
polygon. Each of the (closed) line segments lying on either
side of the edge is termed as anedge extension. An edge
introduces as many edge extensions as the number of its
reflex endpoints. As a matter of convention, we will refer to
a vertex on a hole as a convex vertex if the angle formed by
the two adjacent sides containing the interior of the polygon
is smaller thanπ

2
. Else, we refer to the vertex as a reflex

vertex.

Lemma 1 Let G be a set of guards that△-guards a simple
polygonP . If v is a convex vertex inP (lying on the exterior
or hole boundary), thenv ∈ G. If e is any edge extension in
P , then there exists a guard inG that lies one.

The proof is presented in the accompanying technical
report [9]. Using Lemma1, we can prove the lower bound
on the number of guards of any△-guarding set ofP .

Theorem 1 (Lower Bound) If a set of guardsG,△-guards
a simple polygon havingn vertices, then|G| = Ω(

√
n).

Proof: Let the total number of convex and reflex
vertices inP benc andnr, respectively. We have two cases,
nc ≥ n/4 or nc < n/4. First consider,nc ≥ n/4. From
Lemma 1 we know |G| ≥ nc. Hence, |G| ≥ n/4 and
consequently|G| = Ω(

√
n).

Now consider,nc < n/4. That is, nr ≥ 3n/4. Each
edge inP may introduce up to two unique edge extensions.
Consider the set of edge extensions due to edges whose
endpoints are both reflex vertices. Letm be the total number
of such edge extensions. We know,m ≥ 2(nr − nc) ≥ n.

From Lemma1, we know each of thesem extensions must
have a guard placed on them. The optimal algorithm may be
able to use the same guard if two or more extensions intersect
at a point. Letk be the maximum number of extensions that
intersect in one point. To coverm extensions, any algorithm
will require at leastm/k guards. Hence,|G| ≥ m/k.

Now consider the polygon edges that contributed to thek
extensions which intersect at a point. Since we are focusing
only on edges with reflex vertices on both ends, each such
edge must have introduced another extension, contributing
anotherk extensions. Since the two extensions resulting from
a polygon edge are colinear, any guarding set will be forced
to use a separate guard for covering each of the otherk
extensions. Hence,|G| ≥ k.

Multiplying the two lower bounds, we get|G|2 ≥ m or
|G| ≥ √m. Sincem ≥ n, the theorem statement follows.

The bound is tight for polygon with holes. Figure2 shows an
instance where the△-guarding has sizeO(√n). The bound
may not be tight for polygons without holes.

Fig. 2. PolygonP consists ofk × k holes aligned along a grid. The
outer boundary of the polygon forms a square. The number of vertices of
P aren = 4k2 + 4. O(k) = O(

√
n) guards (marked by small squares)

are sufficient for△-guardingP .

The lower bound shows that the number of guards required
to△-guard the complete interior is always high. This results
from having to guard each convex vertex and edge extension,
which may not be important for many applications. As
described in the introduction, we will restrict our attention
to △-guarding only a set of line segments joining points on
the boundary of a simply-connected polygon.

III. △-GUARDING CHORDS

Let P be a simply-connected polygon. Achord in P is
any line segment which joins two mutually visible points
that lie on the boundary ofP . A diagonal is special type of
chord where both points are vertices ofP .

Definition 2 A chord is said to be△-guarded by a set of
guardsG, if there existsat least one pointon the chord△-
guarded byG.

The chord△-guarding problem is defined as:Given a set
of chordsC in a simply-connected polygon, find the minimum
set of guards to△-guard every chord inC.

The above definition uses the notion of△-guarding at least
one point per chord. For the problem of△-guardingevery
point on the chord, one can construct an instance where
the set of input chords fill the entire polygon. Thus, the
problem becomes at least as hard as△-guarding the entire
polygon. Hence, we needΩ(

√
n) guards in the worst-case.

The algorithm from [7] can be applied to obtain alog factor



approximation for△-guarding every point on a set of chords.
We focus on△-guarding at least one point per chord, and
present a constant factor approximation algorithm.

Our main result for this problem is as follows.

Theorem 2 (Chord Guarding) Given a set of chordsC in
a simply-connected polygonP , there exists an algorithm
which finds a set of guardsG △-guarding C, such that
|G| ≤ 12k∗ where k∗ is the minimum number of guards
required to△-guardC.

A. Terminology and notation

We label the points on the boundary ofP in the clockwise
order, starting from an arbitrarily chosen vertex. If a point
p on the boundary appears before pointq in the clockwise
ordering, then we denote this byp ≺ q. For each chord
Ci, we term the endpoint that appears first in the clockwise
ordering along the boundary as itsstart point (si) and the
other endpoint as theterminal point (ti). Thus,si ≺ ti.

We map allsi and ti to a circle maintaining their clock-
wise ordering (Figure3). The part of the boundary ofP
from si to ti along the clockwise order maps to an arc on
the circle; we term this as theinduced arc (Ai). The chord
also divides the polygon into two subpolygons. We term the
subpolygon corresponding to the induced arc as theinduced
subpolygon, denoted byPi. Pi is made up of the boundary
of P betweensi and ti and the edgetisi.
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Fig. 3. The endpoints of all chords map to a circle in clockwiseorder. The
corresponding arc is termed as the induced arcAi. Pi is the subpolygon
induced byCi.

The set of all arcs induced byC creates a circular-arc
graph [10], with arcs as vertices, and an edge between two
vertices if the corresponding arcs overlap. The maximum
independent set (MIS) of this graph is the largest set of dis-
joint arcs. Masuda and Nakajima [10] presented an optimal
algorithm for finding the MIS of circular-arc graphs.

We use the following distinction for non-disjoint arcs:Ai

andAj with Ai∩Aj 6= ∅ are termedcutting arcs, if Ai 6⊆ Aj

andAj 6⊆ Ai. Ai andAj are said to cut each other.
We will refer to a chord, its induced arc, and the corre-

sponding vertex in the circular-arc graph, interchangeably.
Next, we present a high level discussion of our strategy for
placing guards.

B. Strategy for guard placement

Given the MIS of the circular-arc graph, we classify each
chord inC into four types. A chordCi is of

• Type I if Ai is in the MIS,
• Type II if Ai cuts some arc in the MIS,
• Type III if Ai contains some arc in the MIS,
• Type IV if Ai is contained in some arc in the MIS.

First in SectionIV-A , we describe the placement of a guard
set△-guarding chords of Types I & II. In SectionIV-B,
we will △-guard a subset of Type III guards. Finally, in
SectionIV-C we describe an algorithm for△-guarding the
remaining set of guards of Type III and Type IV chords.

We will show that the total number of guards placed by
our algorithm is at most a constant times that of an optimal
algorithm. We will use the following two useful properties
specific to the△-guarding chords that will allow us to obtain
a constant factor approximation.

Lemma 2 Two chordsCi and Cj intersect if and only if
their corresponding arcsAi andAj cut each other.

The proof, which verifies the ordering ofsi, sj , ti, tj for both
directions, is presented in the technical report [9].

Lemma 3 If chord Ci is △-guarded by a set of guards
G, then at least one guard inG must lie in its induced
subpolygonPi.

Proof: Let p be a point onCi that is△-guarded byG.
Consider the line containing chordCi which passes through
p. This line creates two closed half-planes one of which
contains all points fromPi visible fromp. From Corollary1,
we know this closed half-plane must contain a guard visible
from p. Since no point in this half-plane outside ofPi lies
within the polygon, this guard must be contained inPi.

We term such a guard as thecardinal guard of Ci. We
will charge a constant number of guards in our placement to
a cardinal guard in the optimal placement.

IV. PLACING GUARDS TO△-GUARD CHORDS

In this section, we describe our guard placement scheme in
detail. We will first establish a lower bound on the minimum
number of guards necessary to△-guardC, using the MIS
of the circular arc graph.

A. Guarding Type I and II chords

Lemma 4 If M is the MIS of disjoint arcs in the circular-
arc graph, then|M | ≤ k∗, wherek∗ is minimum number of
guards for△-guardingC.

Proof: Since all arcs in the MIS are disjoint, their
induced subpolygons are disjoint. That is, for any two arcs
Ai, Aj ∈ M we havePi ∩ Pj = ∅. From Lemma3, we
know each chord must have at least one guard in its induced
subpolygons. Since the subpolygons for all chords in the
MIS are disjoint, no two chords may share a cardinal guard.
Hence, there are at least as many cardinal guards as the
number of disjoint subpolygons. Therefore,|M | ≥ k∗.

We now describe setS1 guarding chords of Types I & II.

Lemma 5 If S1 is the set of endpoints of chords inM , then
S1 △-guards all chords of Types I & II, and|S1| ≤ 2k∗.



Proof: First consider Type I chords. Since we place a
guard at both endpoints of each such chord,all points lying
on a Type I chord are△-guarded. LetCi by a Type II chord
whose arc cuts an arc ofCj , a Type I chord. According to
Lemma 2, Ci and Cj must intersect in a point. Since all
points onCj are△-guarded,Ci is △-guarded. Hence, all
Type II chords are△-guarded.

B. Guarding a subset of Type III chords

Now consider chords of Type III. We call the portion of
the circle between two consecutive arcs in the MISgaps.
Type III chords have both endpoints in a gap, and the start
and terminal endpoints must lie in different gaps. Each gap
may contain multiple start and terminal points. Since there
are as many gaps as arcs in the MIS, from Lemma4, we
may place a constant number of guards per gap and perform
comparable to an optimal algorithm.

A2

A3

A4

A5

A1

Fig. 4. Type III chords. The arcs in MIS are shown dotted, gapsare marked
shaded. In each gap, we place guards (marked square) on the endpoints of
chords with earliest start point or latest terminal point. Chords with arcs
A1, . . . , A4 may not be△-guarded by this set of guards, where asA5 is.

We will place at most four guards per gap in a guard set
S2 as follows (Figure4):

• on the two endpoints of the Type III chord with the first
start point within each gap (if any), and

• on the two endpoints of the Type III chord with the last
terminal point within each gap (if any).

Lemma 6 If Ci andCj are any two Type III chords not△-
guarded byS2, then eitherAi andAj are non-cutting arcs
or both chords start from the same gap and end in the same
gap. |S2| ≤ 4k∗, wherek∗ is the optimal number of guards
for △-guardingC.

Proof: There are as many gaps as the number of arcs
in the MIS. We place at most four guards per gap. Using
Lemma4, |S2| ≤ 4k∗.

We will prove the contrapositive of the statement of the
lemma. IfAi andAj are cutting arcs with either their start
or terminal points in different gaps, thenCi andCj are△-
guarded byS2. We will prove the case when their start points
lie in different gaps. The case for the terminal points ofCi

andCj lying in different gaps is symmetric.
Without loss of generality, letsi ≺ sj . For contradiction,

assume thatCi andCj are not△-guarded byS2.
Consider the gap containingsj . We know this gap contains

at least one start point of a Type III chord, i.e.,sj . If sj
is the earliest start point in this gap, thenS2 contains two
guards placed on either endpoints ofCj and hence,Cj must
be△-guarded, which is a contradiction. Thus, there exists
some other start point in the same gap beforesj , say sk
corresponding to a Type III chordCk.

sk tksj

si

tj

sk tksj

si

tj

Fig. 5. Illustration of the proof for Lemma6. Ci andCj start in different
gaps. At least one ofCi or Cj cuts a chord with guards placed on two
endpoints,Ck.

For the terminal point ofCk, we have two possibilities
(See Figure5)

1) tk ≺ tj . We know sk ≺ sj . tk and tj do not lie
in the same gap assk and sj respectively. Thus we
get, sk ≺ sj ≺ tk ≺ tj . Therefore,Ak cuts Aj .
From Lemma2, Ck must intersect withCj . Since
we have guards placed on both endpoints ofCk, all
points onCk are△-guarded includingCj ’s point of
intersection withCk. Hence,Cj is △-guarded, which
is a contradiction.

2) tj ≺ tk. SinceCi andCj are cutting arcs andsi ≺ sj ,
we get ti ≺ tj . Thereforeti ≺ tk. Since si lies in
a gap before the one that containssj and sk, we get
si ≺ sk ≺ ti ≺ tk. Hence, the arcs ofCi andCk cut
each other. Following the similar argument,Ci must
be△-guarded, which is a contradiction.

Lemmas5 and6 present guard placement of size at most
6k∗ covering all Type I, II and a subset of III chords in
C. We now describe the placement of another guard set to
△-guard all remaining chords inC.

C. Guarding remaining Type III and IV chords

Let C ′ ⊂ C be the set of chords not△-guarded by guard
setsS1 andS2 described in SectionIV-A . C ′ consists of a
subset of Type III chords given by Lemma6, and all Type
IV guards. Lemma6 states that ifCi, Cj ∈ C ′ cut each
other, then they must start and terminate in the same gap.
We will define an equivalence class of all Type III chords
that start and terminate in the same gap. Similarly, we will
define another equivalence class of Type IV chords that are
contained in the same arc in the MIS. We term each such
class as agroup. Thus two chords inC ′ lie in the same
group if they start and terminate in the same gap, or if they
are contained within the same arc in the MIS.

While the chords within each group may cut each other,
we show that chords in distinct groups do not.

Lemma 7 If Cm ∈ Gi and Cn ∈ Gj are two chords in
distinct groups, thenAm andAn do not cut each other.

The full proof, presented in [9], verifies all the cases and
shows that the arcs cannot cut each other. Hence, two groups
are either disjoint or one completely contains the other.

This gives a partial ordering on all groups based on
inclusion. We use this to create a tree of chordsT :



1) Re-index all chords inT , such that for anyCi andCj

if si ≺ sj then i < j. That is, if a chord starts before
another, then it has a lower index than the other.

2) The circumference of the circle forms the root.
3) First create a tree of groups. Iteratively add all groups

as nodes in the tree using the rule: groupGj is an
ancestor ofGi if and only if the induced arc ofGi is
completely contained inGj .

4) Replace each group nodeGi with a chain of chord
nodes, one node per chord in the group. The chord
with a lower index is at a lower depth in this chain.
The subtree rooted atGi is attached to the chord node
with the highest index, and the parent ofGi is attached
to the chord node with the lowest index.

In the following lemmas, we will prove useful properties
of T which will form the basis of our guard placement
algorithm. Denote the shortest path from any nodeCk

towards the root byΠ(Ck). We show the start points of
chords lying on the same path follow in order of the path.
Furthermore, no chord which is an ancestor ofCk in Π(Ck)
terminates beforeCk starts.

Lemma 8 If Cm is the ancestor ofCn then sm � sn and
sn � tm.

Proof: First letCm andCn belong to the same group.
By construction,sm � sn. Furthermore, if both are Type III
chords, thensm andsn must lie in the same gap which comes
before the gap containingtm and tn. Therefore,sn ≺ tm.
Similarly, if both are Type IV chords, then iftm ≺ sn then
Am andAn are disjoint leading to a contradiction about them
being contained in the same arc in the MIS. Hence, ifCm

andCn belong to the same group then the lemma follows.
Next, let Cm and Cn belong to different groups. Since

Cm is an ancestor ofCn, we know that the group containing
Cm completely contains the group containingCn (Steps (3)
and (4) of the construction ofT ). Therefore,Am completely
containsAn implying sm ≺ sn ≺ tn ≺ tm.

We now place guards to△-guard chords in the ordered
tree T . By construction, all leaf nodes inT have disjoint
induced subpolygons. Furthermore, only guards along the
same path to the rootmay share a cardinal guard. Hence,
any guard set must contain at least as many cardinal guards
as the number of paths from leaf nodes to the root. However,
this lower bound is not sufficient to obtain a constant
factor approximation directly. There are instances where the
number of guards necessary to△-guard a path can vary from
as few as two to as many as the number of chords along the
path. In addition, two or more paths may merge and thus be
able to share guards. Nevertheless, we show that the greedy
approach in Algorithm1 correctly△-guards all chords inT
using at most a constant times the number of guards in an
optimal guard set (Lemma11).

The algorithm uses the ordering property presented in
Lemma8. Initially all chords are marked as not being△-
guarded. At the start of each iteration (Step4), we pick a
chordCk with the highest depth not yet marked△-guarded.
All descendants ofCk have been△-guarded in previous

iterations. We will place a cardinal guardx ∈ Pk for Ck.
We will choose its location to be such that it sees a point
on the chord with the lowest depth which lies onCk’s path
to the root. All intermediate chords are marked△-guarded
using at most six guards as given in Step6. The following
lemma proves the correctness of this intermediate step.

Algorithm 1: TreeGuarding

Input : T Ordered tree of chords inC ′

Output : S3 guard set△-guardingC ′

1 S3 ← ∅
2 mark all chords inT as not△-guarded
3 while ∃ a chord inT is not marked△-guardeddo
4 k ← largest index such thatCk is not△-guarded
5 i← smallest index such that some point

y ∈ Ci ∈ Π(Ck) is visible from a pointx ∈ Pk

6 S3 ← S3 ∪ {x, y, sk, tk, si, ti}
7 mark allCj ∈ Π(Ck) with i ≤ j ≤ k as△-guarded
8 end
9 return guarding setS3

Lemma 9 If a point x ∈ Pk sees a pointy ∈ Ci such that
Ci is the ancestor ofCk, then{x, y, sk, tk, si, ti} △-guard
all chords on the path fromCk to Ci.

Proof: First observe thatCi andCk are△-guarded by
guards on their endpoints. LetCj be any chord on the path
from Ck to Ci. If either endpoint ofCj is shared with that
of Ci or Ck, thenCj is △-guarded.

Otherwise, we haveCj lying on the path fromCk to Ci,
i < l < k. By the ordering property (Lemma8), si ≺ sj ≺
sk. We have two cases:

(1) ti � tk. From Lemma8, we get the orderingsi ≺
sj ≺ sk � ti � tk. Also from Lemma8, Cj cannot terminate
beforesk sinceCk is a descendant ofCj . Therefore,Cj must
intersect at least one ofCi andCk and thus be△-guarded
by the guards placed on the endpoints ofCi andCk.

Fig. 6. One iteration of Algorithm1 (Steps4–7). The guards are placed
at locations marked by a square. Any chord with a starting vertex lying in
betweensi andsk is △-guarded.

(2) tk ≺ ti. We have three cases: (a)tk ≺ tj ≺ ti, (b)
tj ≺ tk, or (c) ti ≺ tj . Recall thatsi ≺ sj ≺ sk. Hence for
(b) and (c),Cj intersects with eitherCk or Ci, respectively.
Hence,Cj will be △-guarded by the guards on the endpoints
of Ck andCi.



Consider case (a) (Figure6). We havePk ⊂ Pj ⊂ Pi.
x ∈ Pk sees a pointy ∈ Ci. Extend the segment fromy to
x till it hits the boundary ofPk at pointz. Segmentzy is a
chord inPi. Sincez ∈ Pj , let y′ be the point of intersection
of segmentzy (other thanz) with the boundary ofPj . y′

may either lie on the edgeCj of Pj or on the part of the
boundary ofP from sj to tj . However, the latter is also a
part of the boundary ofPi – in fact, the part of the boundary
of Pi which does not contain the edgeCi. This leads to the
contradiction that a chordzy intersects the boundary ofPi

at three distinct points,z, y and y′. Hence,y′ must lie on
Cj which impliesy′ is visible from the guards atx and z.
Thus,Cj is △-guarded.
The correctness of the algorithm follows from the correctness
of the intermediate step.

Corollary 2 All chords inT are△-guarded by Algorithm1.

Now we show that the size ofS3 is only a constant times
that of any optimal guarding set. Consider an optimal guard
setG∗ coveringC ′. For each guard inG∗, we create a new
set of all chords for which the guard acts as a cardinal guard.
That is, for anyg ∈ G∗ we create the set{Ci|Ci ∈ C ′, g ∈
Pi}. Denote this collection of sets byC∗.

We now create another collection of sets, denotedC, for
Algorithm 1. For each iteration of the algorithm, we create a
new set that contains all chords marked△-guarded in Step7.
That is, create the setCk = {Cj |i ≤ j ≤ k} and add it toC.
The largest index of chords contained in this set corresponds
to the largest unmarked index (i.e.k) found in Step4.

Lemma 10 If k and k′ are the largest indices in distinct
setsCk and Ck′ in C respectively, thenk 6= k′ and no set in
C∗ contains bothCk andCk′ .

Proof: Consider any iteration of Algorithm1 and the
corresponding set inC. If k was the largest unmarked index
in Step4, then it is not included in the sets inC from previous
iterations. Furthermore, all descendants ofk are marked
△-guarded. All chords in the current iteration marked△-
guarded have index smaller thank. Hence, ifk and k′ are
the largest indices in two distinct sets ofC thenk 6= k′.

Now we show thatCk andCk′ cannot appear in the same
set in C∗. Suppose they do. We have two possibilities:Ck

andCk′ lie on the same or different paths to the root. IfCk

andCk′ lie on different paths to the root, then their induced
subpolygonsPk andPk′ are disjoint. Hence, their cardinal
guards cannot be the same, implyingCk′ andCk′ cannot be
in the same set inC∗.

Then Ck′ and Ck′ must lie on the same path. Assume
without loss of generality,k < k′. Sincek andk′ lie in the
same set inC∗, they must share the same cardinal guard, say
g ∈ Pk′ . Furthermore,g also sees a point onCk. Therefore,
Ck will be marked△-guarded and included inCk′ according
to Step7. However,Ck cannot be included in some other
setCk′ ∈ C, which gives a contradiction.

Lemma 11 If S3 is the guarding set obtained in Algo-

rithm 1, and k∗ is the optimal number of guards for△-
guardingC ′, then |S3| ≤ 6k∗.

Proof: Since we place at most six guards per iteration,
|S3| ≤ 6|C|. We know|C∗| = k∗. If we show|C| ≤ |C∗|, we
are done. Suppose|C| > |C∗|. Using Lemma10 this implies
there is some chordCi not contained in any set inC∗ such
that i is the largest index of some set inC. This implies
no guard in the optimal guard set acts as the cardinal guard
for Ci. From Lemma3 this impliesCi is not△-guarded,
which is a contradiction. Thus,|C| ≤ |C∗|, which proves the
statement of the lemma.

From Lemmas5, 6, and11, the guard setsS1, S2 andS3

△-guard all input chords using at most12 times as many
guards as an optimal algorithm.

V. CONCLUSION

In this paper, we studied the problem of guarding a poly-
gon under the△-guarding constraint [6]. The△-guarding
constraint is motivated by practical surveillance scenarios
where the goal is to see all sides of a person despite
self-occlusion. We showed thatΩ(

√
n) guards are always

necessary to△-guard any simplen–sided polygon. Since
the required number of guards to cover the entire polygon
is large, we turned our attention to a scenario in which we
are given entry and exit points to the environment connected
by straight-line paths, i.e., chords. The goal is to△-guard
at least one point on each chord. We presented an approxi-
mation algorithm for simply-connected polygons which uses
at most 12 times the optimal number of guards. In addition
to solving a practical problem, our result is of theoretical
interest because this is one of the few instances where a
constant factor approximation algorithm for an art gallery
problem is known. Our future work includes extending the
result to arbitrary paths as well as polygons with obstacles.
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APPENDIX

A. Proof of Lemma1

Proof:
1) Convex vertices:Suppose not. There exists a convex

vertex vi with no guard placed on it. Without loss of
generality, sayvi lies at the origin of a coordinate system,
with the perpendicular bisector of the interior angle as the
Y -axis.

Fig. 7. There exists a guard on every convex vertex of the polygon.

Consider the triangle spanned byvi−1, vi, andvi+1 (see
Figure 7). Without loss of generality, sayvi−1 has a lower
Y -coordinate thanvi+1. Draw a line throughvi−1 parallel
to the X-axis. Let a be the point of intersection with the
edgevivi+1. We have two cases: (a) There exists a guard in
the interior of trianglevi−1via, or (b) There does not exist
a guard in the interior of the trianglevi−1via.

For (a), letg be some guard with the smallest Y-coordinate
(sayy) lying in the triangle. We havey > 0, sincev lies at
the origin. Consider a point, sayy′ on the Y-axis midway
betweeny and v. Draw a line throughy′ parallel to the
X-axis, and consider the lower half-plane. If there exists a
guard visible fromy′ lying in the lower half-plane, then that
contradicts the assumption thatg is the guard with the lowest
Y-coordinate in the triangle. Hence, there does not exist any
guard in the lower half-plane throughy′. Thus,y′ is not△-
guarded from Corollary1, which sets up our contradiction.

For (b), we repeat the same argument as the case (a) above
using any arbitrary pointy′ with Y -coordinate less than that
of vi−1.

2) Edge extensions:We will prove by contradiction. Con-
sider the case when the edge has two reflex vertices on
its endpoints, sayvi and vi−1. Let the edge be aligned
with the X-axis such that its midpoint is the origin. From
all guards, draw a line passing through all vertices of the
polygon creating a visibility arrangement (Figure8).

Consider any cell,A, in the visibility arrangement sharing
an edge withvivi−1. Let p be any point in the interior of
this cell. p is not visible from any guard with negativeY -
coordinate (the visibility of any such guard is blocked by
eithervi or vi−1). Let y andy′ be the smallestY -coordinates
of guards visible fromp and withX coordinate smaller and
greater thanp, respectively. We denote the corresponding
guards byg andg′ respectively.

If both y andy′ are greater than 0, then draw a line parallel
to theX-axis withY -coordinate equal to0.5min{y, y′}. Let
p′ be a point on this line contained in cellA. Then the

Fig. 8. To△-guard all points lying in the cell (shown shaded) near the
edge, there must exist a guard on each edge extension.

halfplane containingp′ extending towards the negativeY -
axis does not contain any guard visible fromp′. Hence,p′

is not△-guarded, which is a contradiction.
Suppose only one ofy and y′ is greater than 0, sayy′.

Then g must lie on theX-axis. We have eitherg lies on
an edge extension, org lies in the (open) polygon edge.
Supposeg is the left-most point on theX-axis lying on the
polygon edge, but not on the edge extension. LetA be the
cell sharing withvi as one of its vertices. Rotate theX-axis
aboutg clockwise till the first guardg′′ lying to the right of
g is encountered.

Let H be the open halfplane using the line throughg and
g′′ containingvi. If there exists a pointp′ lying in H ∩ A
then draw a line throughp′ parallel togg′′ and consider the
closed lower halfplane. This halfplane does not contain any
guard in its interior, and hencep′ is not△-guarded, which
is a contradiction. Hencep′ must not exist, which impliesg′′

lies on theX-axis to the left ofg. Sinceg is the left-most
guard on the edge,g′′ must lie on the edge extension. The
argument for the other edge extension is symmetrical.

B. Proof of Lemma2

Proof: Without loss of generality letCi start first along
clockwise ordering on the boundary, i.e.,si ≺ sj . If Ci and
Cj intersect, then we havesi ≺ sj ≺ ti ≺ tj (Figure 9).
Hence,Ai cutsAj .

si

ti

sj

tj

v1

si

ti

sj

tj

v1

si

ti

sj

tj

v1

Fig. 9. If Ci andCj intersect, then the correspondings arcs cut each other.
If Ci andCj do not intersect, eitherAj is completely contained inAi, or
Ai andAj are disjoint (givensi ≺ sj ).

Consider the other direction. We prove the contrapositive.
That is, ifCi andCj do not intersect thenAi andAj do not
cut each other. IfCi andCj do not intersect, then we have



either si ≺ ti ≺ sj ≺ tj or si ≺ sj ≺ tj ≺ ti (Figure 9).
These imply eitherAi andAj are disjoint orAj ⊂ Ai. In
both cases,Ai andAj do not cut each other.

C. Proof of Lemma7

Proof: When bothGi andGj contain Type IV chords,
all arcs inGi andGj are contained in disjoint arcs in MIS.
Hence,Am andAn do not cut each other.

If only one group contains Type IV chords, sayGi, then all
arcs inGi lie between two consecutive gaps. On the other
hand, arcs inGj start and terminate in a gap. Hence, all
arcs inGj are either disjoint from arcs inGi or completely
contain arcs inGi.

The third possibility is bothGi andGj contain Type III
chords.

We have three cases:

1) Both starting and terminal gaps forGi and Gj are
distinct. Without loss of generality, letsm ≺ sn. Hence
we have,

a) sm ≺ tm ≺ sn ≺ tn: All arcs in Gi andGj are
disjoint.

b) sm ≺ sn ≺ tn ≺ tm: All arcs in Gj are
completely contained in any arc inGi.

c) sm ≺ sn ≺ tm ≺ tn: Am and An cut each
other. That is,Cm and Cn are Type III chords
with distinct start or terminal gaps cutting each
other. From Lemma6 we have thatS2 covers
both Cm andCn. HenceCm, Cn 6∈ C ′ which is
a contradiction.

2) Only starting gaps forGi andGj are distinct. Without
loss of generality, letsm ≺ sn. Hence we have,

a) sm ≺ tm ≺ sn ≺ tn: We know tm and tn lie
in the same gap. Therefore,sn and tn lie in the
same gap which is a contradiction since Type III
arcs span at least one gap.

b) sm ≺ sn ≺ tn � tm: An is completely contained
in Am.

c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.

3) Only terminal gaps forGi andGj are distinct. Without
loss of generality, lettm ≺ tn. Hence we have,

a) sm ≺ tm ≺ sn ≺ tn: We know sm and sn lie
in the same gap. Therefore,sm andtm lie in the
same gap which is a contradiction since Type III
arcs span at least one gap.

b) sn � sm ≺ tm ≺ tn: Am is completely
contained inAn.

c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.
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