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Abstract—The art gallery problem is a classical sensor consider a video conferencing system where a person can
placement problem that asks for the minimum number of mgve within a conference room. If the room is convex, then
guards required to see every point in an environment. The a single camera is sufficient to guarantee visibility (FegL:

standard formulation does not take into account self-occlusions H if th tand ith hi her back to th I
caused by a person or an object within the environment. OWEVET, TINe PErson Stands wi IS Or her back to the only

Obtaining good views of an object from all orientations is Camera, no good view of the person will be available. Our
important for surveillance and visual tracking applications. We  goal will be to place cameras such that any person or object
study the art gallery problem under a constraint, termed A-  will be seen from all orientations, in spite of self-occhusi
guarding, that ensures that all sides of any convex object are
always visible in spite of self-occlusion.

Our contributions in this paper are two-fold: we first prove
that Q(y/n) guards are always necessary forA-guarding the ’ P % &
interior of a simple polygon having n vertices. Next, we study No front view
the problem of A-guarding a set of line segments connecting
points on the boundary of the polygon. This is motivated by
applications where an object or person of interest can only move
along certain paths in the polygon. We present a constant factor

approximation algorithm for this problem — one of the few such ~ F19. 1. The standard polygon guarding problem ensures trey point
results for art gallery problems. in the environment is seen from at least one guard. However,taself-

occlusions, some part of a person may not be visible. We stuapdlygon
guarding problem in the presence of self-occlusions.

I. INTRODUCTION

Consider the basic task of placing cameras in an environ- We use this as motivation to study the problem of placing
ment in order to ensure that every point in the environmeriieé minimum number of cameras in order to see all faces
is seen from at least one camera. By carefully choosin@f any convex object moving in the environment. Smith and
their locations, the total number of cameras required can fevans [6] introduced this problem, and formalized it as the
minimized. This is known as the art gallery problem, and haf®llowing A-guarding condition:
been the area of active research for over three decades [Hefinition 1 A point p is said to beA-guardedby a set

The art gallery problem asks for the minimum number of guardsG, if p is visible from a non-empty set of guards

cameras required to see all points in ansided polygon. v C G andp lies in the convex hull of”. A simple polygon

Various bounds have been established on the minimum is said to be/A-guardedby a set of guardgs, if every
number of guards required for different classes of p°|ypointp e P is A-guarded byG. ’

gons [1], [2]. In particular|n/3] guards are always sufficient
and sometimes necessary for guardingrassided simple Note that the guards themselves need not be visible from
polygon without holes. each other.

O’Rourke and Supowit [3] proved that the problem of Smith and Evans [6] proved that deciding Af vertex
determining the minimum number of guards required t@uards canA-guard a simple polygon is NP-hard. Efrat
cover a given polygon is NP-hard. Efrat and Har-Peled [4§t al. [7] presented a randomized algorithm based on
presented a polynomial time algorithm to guard a polygoff] that when applied to theA-guarding problem yields
using at mostO(OPTlog OPT) guards, where OPT is the @ O(log OPT)—approximation for polygons without holes.
optimal number of guards. Nilsson [5] presented a constafince theA-guarding constraint generalizes the simple vis-
factor approximation algorithm to guard the interior ofibility requirement for the art gallery problem, we expeat t
any monotone polygon. No constant factor approximatioﬁ|aCe more cameras. In this paper, our first contributioo is t
algorithm for guarding general polygons is known. show that(2(y/n) guards arealwaysnecessary ta\-guard

The classical art gallery problem only requires that eacnY Simple polygon with: vertices (with or without holes).
point in the environment to be visible from a camera. How- The large lower bound comes as a result of having to
ever, for many applications visibility along is not suffiste £-guard the entire polygon. In many applications such as
Obtaining a good view is equally important. For eXamme:,surve|llance or mobile video conferencing, we may not need

to A-guard the entire polygon. Insteady-guarding may
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between points on the boundary of a polygon. For example, From Lemmal, we know each of these extensions must
these points can correspond to entry and exit points in theve a guard placed on them. The optimal algorithm may be
environment, the line segments being paths likely to bertakeable to use the same guard if two or more extensions intersect
by a person. Our goal is té\-guard at least one point on at a point. Letk be the maximum number of extensions that
each line segment, thus guaranteeing that independeng of thtersect in one point. To coven extensions, any algorithm
orientation, all sides of the person will be seen at someill require at leastn/k guards. HenceG| > m/k.
point along the path. Our second contribution is to present Now consider the polygon edges that contributed toithe
an approximation algorithm that places at most 12 times @&xtensions which intersect at a point. Since we are focusing
many guards as an optimal algorithm. In addition to being afnly on edges with reflex vertices on both ends, each such
practical interest, our result is one of the few constantofac edge must have introduced another extension, contributing
approximation algorithms for an art gallery problem. anotherk extensions. Since the two extensions resulting from
a polygon edge are colinear, any guarding set will be forced
to use a separate guard for covering each of the other
extensions. HenceG| > k.

In this section, we prove a lower bound on the number Multiplying the two lower bounds, we géG|?> > m or
of guards necessary th-guard any simple polygo®. The |G| > \/m. Sincem > n, the theorem statement follows.
definition of A-guarding allows the degenerate cases of a ]
point beingA-guarded by two visible guards if it lies on the The bound is tight for polygon with holes. Figu2eshows an
segment joining them. The next statement follows from thihstance where thé\-guarding has siz&(/n). The bound
definition of A-guarding and will be useful in the analysis. may not be tight for polygons without holes.

II. LOWERBOUND ON THE NUMBER OF GUARDS FOR
/A\-GUARDING A SIMPLE POLYGON

Corollary 1 A pointp is A-guarded if and only if any closed
half-plane drawn with the line passing throughcontains a
guard visible fromp.

For establishing the lower bound, we will prove necessary
conditions on where the guards must be placed. We first
define an edge extension as follows. Extend an edg® of Fig. 2. PolygonP consists ofk x k holes aligned along a grid. The

. . - outer boundary of the polygon forms a square. The number oicesrof
from either endpoint until it reaches the boundary of the aren = 4k? + 4. O(k) = O(y/n) guards (marked by small squares)
polygon. Each of the (closed) line segments lying on eithere sufficient forA-guarding P.
side of the edge is termed as afige extension. An edge
introduces as many edge extensions as the number of itsThe lower bound shows that the number of guards required
reflex endpoints. As a matter of convention, we will refer tdo A-guard the complete interior is always high. This results
a vertex on a hole as a convex vertex if the angle formed yom having to guard each convex vertex and edge extension,
the two adjacent sides containing the interior of the patygowhich may not be important for many applications. As
is smaller thanZ. Else, we refer to the vertex as a reflexdescribed in the introduction, we will restrict our attemti
vertex. to A-guarding only a set of line segments joining points on

the boundary of a simply-connected polygon.

Lemma 1 Let G be a set of guards that-guards a simple
polygonP. If v is a convex vertex i¥ (lying on the exterior I1l. A-GUARDING CHORDS
or hole boundary), them € G. If e is any edge extension in

P, then there exists a guard i@ that lies one. Let I be a simply-connected polygon. énord in P is

any line segment which joins two mutually visible points
The proof is presented in the accompanying technicdhat lie on the boundary aP. A diagonal is special type of
report [9]. Using Lemmadl, we can prove the lower bound chord where both points are vertices Bf

on the number of guards of any-guarding set off” Definition 2 A chord is said to be/\-guarded by a set of

Theorem 1 (Lower Bound) If a set of guard<, A-guards guardsG, if there existsat least one poinon the chord/\-
a simple polygon having vertices, thenG| = Q(y/n). guarded byG.

Proof: Let the total number of convex and reflex The chord/A-guarding problem is defined aGiven a set
vertices inP ben. andn,., respectively. We have two cases,of chordsC' in a simply-connected polygon, find the minimum
ne > n/4 or n. < n/4. First consider,n. > n/4. From set of guards toA-guard every chord irC.

Lemmal we know |G| > n.. Hence, |G| > n/4 and The above definition uses the notionAfguarding at least
consequentlyG| = Q(y/n). one point per chord. For the problem df-guardingevery

Now consider,n. < n/4. That is,n, > 3n/4. Each point on the chord, one can construct an instance where
edge inP may introduce up to two unique edge extensionghe set of input chords fill the entire polygon. Thus, the
Consider the set of edge extensions due to edges whge®blem becomes at least as hard/aguarding the entire
endpoints are both reflex vertices. Letbe the total number polygon. Hence, we nee@(,/n) guards in the worst-case.
of such edge extensions. We knaw,> 2(n, — n.) > n. The algorithm from [7] can be applied to obtairieg factor




approximation for/A-guarding every point on a set of chords. « Type | if A; is in the MIS,
We focus onA-guarding at least one point per chord, and « Type Il if A; cuts some arc in the MIS,
present a constant factor approximation algorithm. o Type lll if A; contains some arc in the MIS,
Our main result for this problem is as follows. o Type IV if A; is contained in some arc in the MIS.
Firstin SectiorlV-A , we describe the placement of a guard
set A-guarding chords of Types | & Il. In Sectioh/-B,
we will A-guard a subset of Type Ill guards. Finally, in
SectionlV-C we describe an algorithm fof\-guarding the
remaining set of guards of Type Il and Type IV chords.
We will show that the total number of guards placed by
A. Terminology and notation our algorithm is at most a constant times that of an optimal
algorithm. We will use the following two useful properties
specific to the/\-guarding chords that will allow us to obtain
a constant factor approximation.

Theorem 2 (Chord Guarding) Given a set of chordé’ in

a simply-connected polygof, there exists an algorithm
which finds a set of guard& A-guarding C, such that

|G| < 12k* where k* is the minimum number of guards
required toA-guard C.

We label the points on the boundary Bfin the clockwise
order, starting from an arbitrarily chosen vertex. If a poin
p on the boundary appears before pajnin the clockwise
ordering, then we denote this By < ¢. For each chord Lemma 2 Two chordsC; and C; intersect if and only if
C;, we term the endpoint that appears first in the clockwisgheir corresponding arcsi; and A; cut each other.
ordering along the boundary as #kart point (s;) and the
other endpoint as theerminal point (¢;). Thus,s; < t;.

We map alls; andt; to a circle maintaining their clock-
wise ordering (Figure3). The part of the boundary oP Lemma 3 If chord C; is A-guarded by a set of guards
from s; to ¢; along the clockwise order maps to an arc oy, then at least one guard i/ must lie in its induced
the circle; we term this as theduced arc (A;). The chord subpolygonp;.
also divides the polygon into two subpolygons. We term the
subpolygon corresponding to the induced arc adrdaced
subpolygon, denoted byP;. P; is made up of the boundary
of P betweens; and¢; and the edgé;s;.

The proof, which verifies the ordering ef, s;,¢;, t; for both
directions, is presented in the technical report [9].

Proof: Let p be a point onC; that is A-guarded byG.
Consider the line containing chord; which passes through
p. This line creates two closed half-planes one of which
contains all points fron®; visible fromp. From Corollaryl,
we know this closed half-plane must contain a guard visible
from p. Since no point in this half-plane outside &f lies
within the polygon, this guard must be containedin =

We term such a guard as tlvardinal guard of C;. We
will charge a constant number of guards in our placement to
a cardinal guard in the optimal placement.

IV. PLACING GUARDS TO A-GUARD CHORDS

In this section, we describe our guard placement scheme in
Fig. 3. The endpoints of all chords map to a circle in clockvasger. The detail. We will first establish a lower bound On the minimum
corresponding arc is termed as the induced Ajc P; is the subpolygon number of guards necessary fo-guard C, using the MIS
induced byC;. of the circular arc graph.

The set of all arcs induced bg' creates a circular-arc A. Guarding Type | and Il chords
graph [10], with arcs as vertices, and an edge between twemma 4 If M is the MIS of disjoint arcs in the circular-
vertices if the corresponding arcs overlap. The maximurarc graph, then M| < k*, wherek* is minimum number of
independent set (MIS) of this graph is the largest set of diguards for A-guarding C.
joint arcs. Masuda and Nakajima [10] presented an optimal
algorithm for finding the MIS of circular-arc graphs.
We use the following distinction for non-disjoint arcsg;

Proof: Since all arcs in the MIS are disjoint, their
induced subpolygons are disjoint. That is, for any two arcs
: . " A;,A; € M we haveP; N P; = (). From Lemma3, we
andA; with A;,NA; are termedutting arcs, if A; Z A; v 0 v J Lo
J inA; 70 9 i £ A, know each chord must have at least one guard in its induced

andA; € A;. A; and A; are said to cut each other. . .
We will refer to a chord, its induced arc, and the corre§prOIygonS' Since the subpolygons for all chords in the

sponding vertex in the circular-arc graph, interchang,eabIMIS are disjoint, no two chords may share a cardinal guard.

. . . ence, there are at least as many cardinal guards as the
N high level f f N
plz)éti}];vZupa:?dssem a high level discussion of our strategy c;r?umber of disjoint subpolygons. Therefot@/| > k*. m

We now describe sef; guarding chords of Types | & Il.
B. Strategy for guard placement

Given the MIS of the circular-arc graph, we classify eaclemma 5 If S; is the set of endpoints of chords i, then
chord inC' into four types. A chord’; is of Sy A-guards all chords of Types | & Il, andS;| < 2k*.



Proof: First consider Type | chords. Since we place a S
guard at both endpoints of each such chailtlpoints lying 8; t;
on a Type | chord aré\-guarded. LeC; by a Type Il chord 777 7o
whose arc cuts an arc @}, a Type | chord. According to
Lemma?2, C; and C; must intersect in a point. Since all Si at;
points onC; are A-guarded,C; is A-guarded. Hence, all % i
Type |l chords are\-guarded. = T

. Fig. 5. lllustration of the proof for Lemmé. C; andC; start in different

B. Guarding a subset of Type Il chords gaps. At least one of; or C; cuts a chord with guards placed on two
Now consider chords of Type Ill. We call the portion of &"dPOINtSCx-

the circle between two consecutive arcs in the Mips.
Type lll chords have both endpoints in a gap, and the start
and terminal endpoints must lie in different gaps. Each g
may contain multiple start and terminal points. Since ther
are as many gaps as arcs in the MIS, from Lendnave
may place a constant number of guards per gap and perform
comparable to an optimal algorithm.

For the terminal point oiC),, we have two possibilities
ee Figureb)

1) ¢t < t;. We know s, < s;. t; and ¢; do not lie
in the same gap as;, and s; respectively. Thus we
get, s < s; < ti =< t;. Therefore, A, cuts A;.
From Lemma2, C, must intersect withC;. Since
we have guards placed on both endpointsCif all

A - points onC}, are A-guarded includingC;’s point of
1 A——— "A4 intersection withC),. Hence,C; is A-guarded, which
.................. A3 A5 is a contradiction.
2) t; < ti. SinceC; andC; are cutting arcs ang; < s,
Fig. 4. Type lll chords. The arcs in MIS are shown dotted, gapsmarked we gett; < t;. Thereforet; < t;. Sinces; lies in

shaded. In each gap, we place guards (marked square) on theimsdof .
chords with earliest start point or latest terminal point.ofis with arcs a gap before the one that Contamlsand Sk, We get

A1, ..., As may not beA-guarded by this set of guards, wheres is. s; < s < t; < t. Hence, the arcs of’; and Cj, cut
each other. Following the similar argumeidt; must

We will place at most four guards per gap in a guard set  be A-guarded, which is a contradiction.
S, as follows (Figured): m

« on the two endpoints of the Type Ill chord with the first Lemmas5 and6 present guard placement of size at most
start point within each gap (if any), and 6k* covering all Type I, Il and a subset of Ill chords in

« on the two endpoints of the Type Il chord with the lastC. We now describe the placement of another guard set to
terminal point within each gap (if any). A-guard all remaining chords i@'.

Lemma 6 If C; and C; are any two Type Ill chords nah-  C. Guarding remaining Type Il and IV chords
guarded bySs, then either4; and A; are non-cutting arcs

or both chords start from the same gap and end in the same Let C7 C C' be the set of chords nat-guarded by guard
. . gap setsS; and S, described in Sectiotv-A. C’ consists of a
gap. |S2| < 4k*, wherek* is the optimal number of guards

. subset of Type Il chords given by Lemntg and all Type
for A-guarding C. IV guards. Lemma6 states that ifC;,C; € C’ cut each
Proof: There are as many gaps as the number of arcgher, then they must start and terminate in the same gap.
in the MIS. We place at most four guards per gap. UsingVe will define an equivalence class of all Type Ill chords
Lemmad, |Ss| < 4k*. that start and terminate in the same gap. Similarly, we will

We will prove the contrapositive of the statement of thedefine another equivalence class of Type IV chords that are
lemma. If A; and A; are cutting arcs with either their start contained in the same arc in the MIS. We term each such
or terminal points in different gaps, the®y andC; are A- class as agroup. Thus two chords inC” lie in the same
guarded byS,. We will prove the case when their start pointsgroup if they start and terminate in the same gap, or if they
lie in different gaps. The case for the terminal pointsCbf are contained within the same arc in the MIS.
andC; lying in different gaps is symmetric. While the chords within each group may cut each other,

Without loss of generality, let; < s;. For contradiction, we show that chords in distinct groups do not.
assume that’; and C; are notA-guarded bySs.

Consider the gap containing. We know this gap contains
at least one start point of a Type Il chord, i.e;. If s;
is the earliest start point in this gap, théh contains two The full proof, presented in [9], verifies all the cases and
guards placed on either endpoints(@f and hence(’; must  shows that the arcs cannot cut each other. Hence, two groups
be A-guarded, which is a contradiction. Thus, there existare either disjoint or one completely contains the other.
some other start point in the same gap befeyesay s This gives a partial ordering on all groups based on
corresponding to a Type Ill chord. inclusion. We use this to create a tree of chovds

Lemma 7 If C,, € G' and C,, € G7 are two chords in
distinct groups, ther,,, and A,, do not cut each other.



1) Re-index all chords i7", such that for any’; andC; iterations. We will place a cardinal guard € P, for Cj.
if s; < s; theni < j. That is, if a chord starts before We will choose its location to be such that it sees a point
another, then it has a lower index than the other.  on the chord with the lowest depth which lies 6i’s path

2) The circumference of the circle forms the root. to the root. All intermediate chords are markédguarded

3) First create a tree of groups. Iteratively add all groupssing at most six guards as given in S&pThe following
as nodes in the tree using the rule: groGp is an lemma proves the correctness of this intermediate step.
ancestor ofGG? if and only if the induced arc of:’ is
completely contained iiG7.

4) Replace each group node with a chain of chord
nodes, one node per chord in the group. The chord _ ) ,
with a lower index is at a lower depth in this chain. Output: 55 guard setA-guardingC
The subtree rooted &t is attached to the chord node * Sy 0 )
with the highest index, and the parent@f is attached 2 Mark all chords in7” as notA-guarded
to the chord node with the lowest index. 3 while 3 a chord in7 is not markedA-guardeddo

In the following lemmas, we will prove useful properties4 k ¢ largest mdex such thal, is not A-_guarded

of 7 which will form the basis of our guard placement i < smallest md_ex .Sl.JCh that some point
algorithm. Denote the shortest path from any nodg y € C; € I(Cy) is visible from a pointr € P
towards the root bylI(C). We show the start points of ° Ss <= 53U {z,y, 8 brs i, i}

chords lying on the same path follow in order of the path.7 mark all C; € I(C}) with < < j < k as A-guarded
Furthermore, no chord which is an ancestoCqfin II(C},) end .

terminates before), starts. o return guarding sef;

Algorithm 1: TreeGuarding
Input: 7 Ordered tree of chords i6”

Lemma 8 If C,, is the ancestor of’,, thens,, < s, and

s$n =l Lemma 9 If a point x € P, sees a poinyy € C; such that

Proof: First letC,, andC,, belong to the same group. C: is the ancestor of’y, then {x,y, s, tx, s;,t;} /A-guard
By construction,s,, < s,. Furthermore, if both are Type Il all chords on the path frond’; to C;.
chords, ther,,, ands,, must lie in the same gap which comes

before the gap containing, andt,. Therefore,s, < tn. guards on their endpoints. Lét; be any chord on the path

Similarly, if both.a.re_ Type I.V chords, then_tf,,} < sn then from Cj, to C;. If either endpoint ofC; is shared with that
A,, andA,, are disjoint leading to a contradiction about the f C; or Cy, thenC; is A-guarded
7 ’ J .

being contained in the same arc in the MIS. Hencel,jf . .

and C,, belong to the same group then the lemma follows.. Otherwise, we havé']_- lying on the path fromC, to C,
Next, let C,, and C,, belong to different groups. Since ' = L < k. By the order|.ng property (Lemm8), s; < s; <

C,, is an ancestor aof’,,, we know that the group containing s We have two cases: .

C,, completely contains the group containiag (Steps (3) (1) t; = t;. From Lemma8, we get the ordering; <

and (4) of the construction of). ThereforeA,, completely %7 = sk = 1i = i Also from LemmaB, C; cannot terminate
containsA,, implying s,, < s, <ty < tm. befores;, sinceCy, is a descendant @f;. Therefore('; must

- intersect at least one @f; and C}, and thus beA-guarded
We now place guards té\-guard chords in the ordered in ! k
tree 7. By construction, all leaf nodes iff have disjoint by the guards placed on the endpointstgfand C.

induced subpolygons. Furthermore, only guards along the
same path to the roahay share a cardinal guard. Hence,
any guard set must contain at least as many cardinal guards
as the number of paths from leaf nodes to the root. However,
this lower bound is not sufficient to obtain a constant
factor approximation directly. There are instances whbee t
number of guards necessaryAsguard a path can vary from

as few as two to as many as the number of chords along the
path. In addition, two or more paths may merge and thus be
able to Sh_are gua_rds. Nevertheless, we show that th_e greer—qa{ 6. One iteration of Algorithnd (Steps4-7). The guards are placed
approach in Algorithii correctly A-guards all chords i at locations marked by a square. Any chord with a startingexesting in
using at most a constant times the number of guards in &atweens; andsy, is A-guarded.

optimal guard set (Lemmal).

The algorithm uses the ordering property presented in (2) ¢, < t;. We have three cases: (&) < t; < t;, (b)
Lemmas8. Initially all chords are marked as not beiny- ¢; < t, or (c)t; < t;. Recall thats; < s; < s;. Hence for
guarded. At the start of each iteration (S we pick a (b) and (c),C; intersects with eithe€), or C;, respectively.
chord C}, with the highest depth not yet markés-guarded. Hence,C; will be A-guarded by the guards on the endpoints
All descendants ofC;, have beenA-guarded in previous of Cj andC;.

Proof: First observe tha€’; and C}, are A-guarded by




Consider case (a) (Figur@). We haveP, C P; C P;.
x € Py sees a poiny € C;. Extend the segment from to
2 till it hits the boundary ofP, at pointz. Segmenty is a
chord inP;. Sincez € P;, lety’ be the point of intersection
of segmentzy (other thanz) with the boundary ofP;. v’
may either lie on the edgé€’; of P; or on the part of the
boundary of P from s; to ¢;. However, the latter is also a
part of the boundary of; — in fact, the part of the boundary
of P; which does not contain the ed@&. This leads to the
contradiction that a chordy intersects the boundary d?;
at three distinct pointsz, y andy’. Hence,y’ must lie on
C; which impliesy’ is visible from the guards at and z.
Thus, C; is A-guarded.
The correctness of the algorithm follows from the correstne
of the intermediate step.

rithm 1, and £* is the optimal number of guards fof\-
guarding C’, then|S;| < 6k*.

Proof: Since we place at most six guards per iteration,
|S3] < 6|C|. We know |C*| = k*. If we show|C| < |C*|, we
are done. Suppogé€| > |C*|. Using Lemmal0 this implies
there is some chord’; not contained in any set ii* such
that 7 is the largest index of some set ¢h This implies
no guard in the optimal guard set acts as the cardinal guard
for C;. From Lemmas3 this implies C; is not A-guarded,
which is a contradiction. Thus¢| < |C*|, which proves the
statement of the lemma. ]

From Lemmas, 6, and11, the guard set$, Sy and S3
A-guard all input chords using at mo$2 times as many
guards as an optimal algorithm.

Corollary 2 All chords in7 are A-guarded by Algorithni. V. CONCLUSION

In this paper, we studied the problem of guarding a poly-
) ) ) gon under theA-guarding constraint [6]. Theé\-guarding
Now we show that the size df is only a constant times ¢onstraint is motivated by practical surveillance scevsari
that of any qptimal guarding set. ansider an optimal guarghere the goal is to see all sides of a person despite
setG* coveringC’. For each guard iii:*, we create a New gg|f-occlusion. We showed tha&l(y/n) guards are always
set of all chords for which the guard acts as a cardinal guarﬁecessary toA-guard any simplen—sided polygon. Since
That is, for anyg € G* we create the sefC;|C; € C",g € the required number of guards to cover the entire polygon
P;}. Denote this collection of sets k. is large, we turned our attention to a scenario in which we
We now create another collection of sets, denaledor  are given entry and exit points to the environment connected
Algorlthm 1. For each iteration of the algorithm, we create q.)y Straight_“ne pathsy i'e_’ chords. The goa| isﬂeguard
new set that contains all chords markeeguarded in Stefi. ~ at |east one point on each chord. We presented an approxi-
That is, create the s€}, = {C;|i < j < k} and add it toC.  mation algorithm for simply-connected polygons which uses
The largest index of chords contained in this set correspongt most 12 times the optimal number of guards. In addition
to the largest unmarked index (i.e) found in Step4. to solving a practical problem, our result is of theoretical
¢ interest because this is one of the few instances where a
constant factor approximation algorithm for an art gallery
problem is known. Our future work includes extending the
result to arbitrary paths as well as polygons with obstacles

Lemma 10 If £ and k£’ are the largest indices in distinc
setsCr and Cy- in C respectively, ther: £ &k’ and no set in
C* contains bothC}, and C}..

Proof: Consider any iteration of Algorithnl and the
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APPENDIX
A. Proof of Lemmdl

Proof:

1) Convex verticesSuppose not. There exists a convex
vertex v; with no guard placed on it. Without loss of
generality, say; lies at the origin of a coordinate system,
with the perpendicular bisector of the interior angle as the
Y-axis.

Fig. 8. To A-guard all points lying in the cell (shown shaded) near the
edge, there must exist a guard on each edge extension.

halfplane containing’ extending towards the negative-
axis does not contain any guard visible frgsh Hence,p’
v; is not A-guarded, which is a contradiction.

Suppose only one of andy’ is greater than 0, say’.
Then g must lie on theX-axis. We have eithey lies on
an edge extension, qf lies in the (open) polygon edge.
) : k Supposg is the left-most point on th& -axis lying on the
Figure 7). Without loss of generality, say; has a lower ,q\vq0n edge, but not on the edge extension. febe the
Y-coordinate tharv;,. Draw a line throughv;; parallel  c|j sharing withu; as one of its vertices. Rotate thé-axis
to the X-axis. Leta be the point of mtersect!on with the aboutg clockwise till the first guardy” lying to the right of
edgev;v; 1. We have two cases: (a) There exists a guard I is encountered.
the interi_or of t_rianglevi,lv,-a, or (b) There does not exist Let H be the open halfplane using the line throughnd
a guard in the interior of the triangle —,v;a. ~¢" containingu;. If there exists a poinp’ lying in H N A

For (a)., Ietg be some guard with the smallgst Y-cqordmatqhen draw a line through’ parallel togg” and consider the
(sayy) lying in the triangle. We havg > 0, sincev lies at  ¢j55ed lower halfplane. This halfplane does not contain any
the origin. Consider a point, say on th? Y-axis midway gy ard in its interior, and hengg is not A-guarded, which
betweeny and v. Draw a line throughy’ parallel to the g 3 contradiction. Hencg’ must not exist, which implies”
X-axis, and consider the lower half-plane. If there exists fles on the X-axis to the left ofg. Sinceg is the left-most
guard visible fromy’ lying in the lower half-plane, then that guard on the edgey” must lie on the edge extension. The

contradicts the assumption thats the guard with the lowest argument for the other edge extension is symmetricaim
Y-coordinate in the triangle. Hence, there does not exigt an

guard in the lower half-plane througfi. Thus,y’ is notA-  B. Proof of Lemma

guarded from Corollaryl, which sets up our contradiction. Proof: Without loss of generality lef; start first along

For (b), we repeat the same argument as the case () ab@y&.yise ordering on the boundary, i.e;,< s;. If C; and
using any arbitrary poiny’ with Y'-coordinate less than that O, intersect, then we have; < s; < t; < t; (Figure 9).
of vi_1. _ _ o Hence,A; cuts A;.

2) Edge extensionsie will prove by contradiction. Con-
sider the case when the edge has two reflex vertices on
its endpoints, say; and v;_;. Let the edge be aligned
with the X-axis such that its midpoint is the origin. From
all guards, draw a line passing through all vertices of the
polygon creating a visibility arrangement (Figug

Consider any celld, in the visibility arrangement sharing
an edge withv;v;_1. Let p be any point in the interior of
this cell. p is not visible from any guard with negative-
coordinate (the visibility of any such guard is blocked by
eithery; or U.i*.l)' Lety andy’ b.e the smaII.esY-coordlnates Fig. 9. If C; andC; intersect, then the correspondings arcs cut each other.
of guards visible fronp and with X' coordinate smaller and C; andC; do not intersect, eithed; is completely contained inl;, or
greater thanp, respectively. We denote the correspondingt; and A; are disjoint (givens; < s;).
guards byg and ¢’ respectively.

If both iy andy’ are greater than 0, then draw a line parallel Consider the other direction. We prove the contrapositive.
to the X -axis withY'-coordinate equal t6.5 min{y,y'}. Let  Thatis, if C; andC; do not intersect ther; and A; do not
p’ be a point on this line contained in cell. Then the cut each other. IC; andC; do not intersect, then we have

Fig. 7. There exists a guard on every convex vertex of thegauly

Consider the triangle spanned by i, v;, andv; 1 (see




eithers; < t; < s; < t; ors; <s; <t; <t; (Figure9).
These imply eitherd; and A; are disjoint or4; C A;. In
both casesA; and A; do not cut each other. [ ]

C. Proof of Lemm&

Proof: When bothG? andG7 contain Type IV chords,
all arcs inG* and G/ are contained in disjoint arcs in MIS.
Hence,A,,, and A4,, do not cut each other.

If only one group contains Type IV chords, s&¥, then all
arcs inG? lie between two consecutive gaps. On the other
hand, arcs inG’ start and terminate in a gap. Hence, all
arcs inG/ are either disjoint from arcs i or completely
contain arcs inG*.

The third possibility is bothG? and G7 contain Type IlI
chords.

We have three cases:

1) Both starting and terminal gaps fdi’ and G’ are
distinct. Without loss of generality, let,, < s,,. Hence
we have,

a) s, < tm < s, < t,: All arcs in GY and G7 are
disjoint.

b) s, < s, < tn < tm: All arcs in G7 are
completely contained in any arc @',

C) Sm < Sp < tm < t,: A, and A, cut each
other. That is,C,, and C,, are Type lll chords
with distinct start or terminal gaps cutting each
other. From Lemmab we have thatS, covers
both C,,, and C,,. HenceC,,,C,, ¢ C’ which is
a contradiction.

2) Only starting gaps fo€* andG’ are distinct. Without
loss of generality, let,, < s,. Hence we have,

a) Sy <t < Sp < t,: We knowt,, andt, lie
in the same gap. Therefore, andt, lie in the
same gap which is a contradiction since Type I
arcs span at least one gap.

b) s, < sp < t, 2t A, is completely contained
in A,,.

C) Sm < Sn <t < t,: Similar to (1c) above.

3) Only terminal gaps fo€* andG/ are distinct. Without
loss of generality, let,, < t,,. Hence we have,

a) Sy <ty < s, < t,: We know s,,, and s,, lie
in the same gap. Therefore,, andt,, lie in the
same gap which is a contradiction since Type I
arcs span at least one gap.

b) s, =X sm < tm < tn: A, is completely
contained inA4,,.

C) Sm < Sp <t < t,: Similar to (1c) above.

]
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