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Abstract— We study the problem of planning paths for a
team of robots motivated by coverage, persistent monitoring
and surveillance applications. The input is a set of target points
in a polygonal environment that must be monitored using robots
with omni-directional cameras. The goal is to compute pathsfor
all robots such that every target is visible from at least onepath.
The cost of a path is given by the weighted combination of the
length of the path (travel time) and the number of viewpoints
along the path (measurement time). The overall cost is given
by the maximum cost over all robot paths and the objective is
to minimize the maximum cost.

In its general form, this problem is NP-hard. In this paper,
we present an optimal algorithm and a constant factor approx-
imation for two special versions of the problem. In both cases,
the paths are restricted to lie on a pre-defined curve in the
polygon. We show that if the curve satisfies a special property,
termed chain-visibility, then there exists an optimal algorithm
for monitoring a given set of target locations. Furthermore, if
we restrict the input polygon to the class of street polygons, then
we present a constant-factor approximation which is applicable
even if the set of target locations is the entire polygon. In
addition to theoretical proofs, we also present results from
simulation studies.

I. I NTRODUCTION

We study the problem of planning paths for teams of
robots for visibility-based persistent monitoring in complex
environments. Visibility-based monitoring problems com-
monly occur in many applications such as security and
surveillance, infrastructure inspection [1], and environmental
monitoring [2]. These problems have received significant
interest recently [3]–[5], thanks in part, to the technological
advances that have made it easy to rapidly deploy teams
of robots capable of performing such tasks. For example,
Michael et al. [6] demonstrated the feasibility of carrying
out persistent monitoring tasks with a team of Micro Aerial
Vehicles (MAVs) with onboard cameras.

Persistent monitoring problems are typically studied when
the points of interest are given as input. The points may
have associated weights representing their importance. A
common objective is to find the order of visiting the points
that minimizes the weighted latency. Alamdari et al. [7]
showed that this problem is NP-hard and presented twolog
factor approximation algorithms. In many settings, the path
to be followed by the robots is given as input as well and
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Fig. 1. Problem formulation. We are given a set of target points (⋆) in a
polygonal environment. Our goal is to findm paths (−−−) and discrete
viewpoints on the paths (�) such that each target is seen from at least one
viewpoint. Here,R1 seest1 andt2, R2 seest3 andt4 , andR3 seest5–t8.
The cost of a path is a weighted combination of its length (travel time) and
the number of viewpoints (measurement time). A path may consist of only
one point. The objective is to minimize the maximum path cost.

the speed of the robot must be optimized to minimize the
maximum weighted latency. Cassandras et al. [8] presented
an optimal control approach to determine the speed profiles
for multiple robots when their motion is constrained to a
given curve. Yu et al. [9] presented an optimal solution for
computing speed profiles for a single robot moving along a
closed curve to sense the maximum number of stochastically
arriving events on a curve. Pasqualetti et al. [10] presented
distributed control laws for coordination between multiple
robots patrolling on a metric graph.

In this paper, we consider a richer version of the problem
where the points to be visited by the robot are not given,
and instead must be computed based on visibility-based
sensing. We are given a set of target points in a polygonal
environment. Each robot carries an omnidirectional camera
and can see any target as long as the straight line joining
them is not obstructed by the boundary of the polygon. Our
goal is to compute paths form robots, so as to ensure that
each target is seen from at least one point on some path.
Figure1 shows an example scenario form = 3.

Our problem is a generalization of the Art Gallery Problem
(AGP) [11] and the Watchman Route Problem (WRP) [12].
The objective in AGP is to find the smallest set of “guard”
locations, such that every point in an input polygon is seen
from at least one guard. AGP is NP-hard for most types of
input polygons [11], and very few approximation algorithms
exist even for special cases. The objective in WRP is to find
a tour of minimum length for a single robot (i.e., watchman)
so as to see every point in an input polygon. There is an



optimal algorithm for solving WRP in polygons without
any holes [13] and aO(log2 n) approximation algorithm
for n-sided polygons with holes [14]. Carlsson et al [13]
introducedm–WRP where the goal is to findm tours such
that each point in the environment is seen from at least one
tour. The objective is to minimize the total length ofm
tours. They showed that the problem is NP-hard (in fact,
no approximation guarantee is possible).

Using the length of a tour as the cost is reasonable when
a robot is capable of obtaining images as it is moving.
However, in practice, obtaining high-resolution images while
moving may lead to motion blur or cause artifacts to appear
due to rolling shutter cameras. This is especially the case
when MAVs are to be used. It would be desirable for the
robot to stop to obtain a measurement. Instead of finding
a continuous path, we would like to find a set of discrete
viewpoints onm paths. The cost of a path can be modeled as
the weighted sum of the length of the path (travel time) and
the number of measurements along the path (measurement
time). Wang et al. [15] first introduced this objective function
for WRP for the case of a single robot and termed it the
Generalized WRP (GWRP). They showed that GWRP is
NP-hard and presented aO(polylogn) approximation for
the restricted case when each viewpoint is required to see
a complete polygon edge. Fekete et al. [16] presented an
approximation algorithm for the special case of rectilinear
grid polygons and unit sensing range for a single robot.

In this paper, we introduce them robot version of GWRP.
This problem in general is NP-hard since it generalizes
the NP-hard problems of GWRP andm-WRP. Hence, we
consider special instances of the problem and present a
number of positive results in these directions. In particular,
we characterize the conditions under which the problem has
an optimal algorithm (SectionIII ) and a constant-factor ap-
proximation algorithm (SectionIV). In addition to theoretical
analysis, we perform simulations to study the effect of the
number of robots and targets on the optimal cost (SectionV).
We formally state the problems considered in this paper and
our contributions in the following section.

II. PROBLEM FORMULATION

The environmentP is an n-sided 2D polygon without
holes (in one of the problems we consider a 1.5D terrain
environment). We are given a set of target pointsX within P .
We havem robots each carrying an omnidirectional camera.
Let each robot travel with unit speed and let the time to
obtain an image betm. Let Πi denote both theith path and
Vi denote the discrete set of viewpoints along this path. Let
Π denote the collection ofm paths. LetVP(p) denote the
visibility polygon of a pointp in P andVP(Vi) denote the
union of visibility polygons of all viewpoints onΠi.

In this paper, we study two problems for visibility-based
persistent monitoring. In the first problem, we are given a
curve in the polygon along which we must determine the set
of viewpoints. The curve can be, for example, the boundary
of the environment for border patrolling, or a safe navigation
path within the environment. The goal to findm paths along

this curve and corresponding viewpoints to see every point
in X . We show that if the setX and the curve satisfy a
property, termedchain-visibility, then this problem can be
solved optimally.

Definition 1 Let X be a set of points andC be some curve
in a 2D environment. The pair(X,C) is said to be chain
visible if the intersection of the visibility polygon of any
point x ∈ X with C, i.e., VP(x) ∩ X is either empty or
a connected chain.

Although restrictive, the chain-visibility property is satisfied
by various curves. Figure2 shows some examples.

Chain-visibility was used by Carlsson and Nilsson [17]
to show that there always exists acollapsed watchman
path satisfying chain-visibility in street polygons. A street
polygon is a polygon without holes with the property that
its boundary can be partitioned into two chains,U andD,
and any point inU is visible from some point inD and vice
versa. Figure2(b) gives an example. We give more examples
of chain-visibility in the following proposition.

Proposition 1 The following pairs of target points of interest
X and curvesC all satisfy the chain-visibility property:

• X is any set of points in a street polygon andC is a
collapsed watchman route.

• X is any set of points in a polygon without holes and
C is the shortest path between any pair of pointss and
t in the polygon. In particular,C can be a straight line
within the polygon.

• X is any set of points on a 1.5D terrain andC is a
fixed altitude path.

Naturally, if the intersection of the visibility region of a
point with C is empty, we will not be able to compute a
viewpoint onC to see the point. Hence, in the rest of the
paper, we consider only those situations where each point in
X is visible from some point inC while satisfying the chain-
visibility property. Formally, the first problem we consider
is the following:

Problem 1
Input: set of points of interestX and a curveC such that
(X,C) are chain-visible
Output: m pathsΠ = {Πi|Πi ⊆ C} each with viewpoints
Vi where for allx ∈ X we havex ∈ ∪VP(Vi).
Objective: minimize

Π
max
Πi∈Π

(l(Πi) + |Vi|tm).

Contribution: Optimal algorithm (SectionIII ).

The optimal algorithm for this problem is given in Sec-
tion III .

In the second problem,X is simply the set of all points
in the polygon. Our goal is to findm paths, restricted to
a chain-visible curve, so as to monitor every point in the
environment. Here, we focus on the case of street polygons
where we know there always exists a curve, namely the
collapsed watchman route, that is chain-visible for any
subset of points in the polygon [17]. Street polygons have
previously been studied in the context of robot navigation in
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Fig. 2. Examples of curves and environments satisfying the chain visibility property (Definition1). (a) Shortest path between any two points in a polygon
without holes. (b) A collapsed watchman route in a street polygon. (c) 1.5D terrain with a fixed altitude path.

unknown environments [18], [19].

Problem 2
Input: street polygonP and a chain-visible curveC
Output: m pathsΠ = {Πi|Πi ⊆ C} each with viewpoints
Vi where for allx ∈ X we havex ∈ ∪VP(Vi).
Objective: minimize

Π
max
Πi∈Π

(l(Πi) + |Vi|tm).

Contribution: 4–approximation algorithm (SectionIV).

Carlsson and Nilsson [17] presented an optimal algorithm to
find the fewest number of viewpoints alongC to see every
point in P . One way to compute paths would be to first
find this smallest set of viewpoints and then distribute them
into m paths. Unfortunately, this approach can lead to paths
that are arbitrarily longer and consequently arbitrarily worse
than optimal paths (Figure3). Nevertheless, we present a
4–approximation algorithm for Problem2.

Fig. 3. Problem2. The optimal solution withm = 2 paths consists of
two short paths with two viewpoints (�) each. However, first finding the
minimum number of discrete viewpoints ( ) on the input curveC and then
finding them = 2 paths to visit them may give arbitrarily long solutions
(at least one path will have to visit two ).

III. O PTIMAL ALGORITHM WHEN GIVEN A SET OF

TARGETS AND CHAIN -V ISIBLE CURVE

In this section, we present an optimal algorithm for solving
Problem1. Here, we are given as input a set of pointsX in
ann-sided 2D polygon that must be visually monitored. The
goal is to find a set of viewpointsV along withm watchmen
paths that visitV . The watchmen paths are restricted to an
input curveC that along withX satisfies the chain-visibility
property (Definition 1). In this section we show how to
computeV and find them watchmen paths optimally.

In general, the viewpointsV can be anywhere alongC,
i.e., no finite candidate set forV is given. We will first
establish that there always exists an optimal solution in
whichV is restricted to either endpoint of the intersection of

VP(x) with C, wherex is some point inX . Let Cx denote
the segmentVP(x)∩C for x ∈ X . For ease of notation, we
will assign an ordering of points on the curveC. This allows
us to define the left and right endpoints forCx (equivalently,
first and last points ofCx alongC). We have,

Lemma 1 There exists an optimal solution for Problem1
with viewpointsV ∗ such that for anyv ∈ V ∗, if v is the left
(respectively, right) endpoint of some pathΠ∗

i , thenv must
be the right (respectively, left) endpoint of someCx.

The proof is given in the appendix.
This lemma allows us to restrict our attention only to

the set of finite (at most2|X |) points onC. Furthermore,
we need to consider only the right endpoints of allCx for
starting a path, and only the left endpoints for ending a
path. We will use dynamic programming to find the optimal
starting and ending points ofm paths. Before we describe
the dynamic programming solution, we present a subroutine
that is useful in computing the cost of a path when the first
and last viewpoint on the path is given.

Algorithm 1: OPTIMAL SINGLEPATH

Input : i, j: first and last viewpoints for a pathΠi on C
Input : X ′: set of target points such that

∀x ∈ X ′,VP(x) ∩ Πi 6= ∅
Output : Vi: optimal set of viewpoints onΠi to cover

X ′ (including i andj)
Output : Ji: optimal cost forΠi to coverX ′

1 Mark all points inX ′ as uncovered
2 Mark all points inX ′ visible from eitheri or j as

covered
3 Vi ← {i, j}
4 p← i
5 while ∃ an uncovered point inX ′ do
6 q ← first point to the right ofp such thatq is the

right endpoint ofCx for some uncoveredx ∈ X ′

7 Vi ← Vi ∪ {q}
8 Mark all x ∈ X ′ visible from q as covered
9 p← q

10 end
11 Ji = l(Πi) + |Vi|tm
12 returnVi andJi



The subroutine given in Algorithm1 takes as input a path
Πi defined by its first and last viewpoint onC. It also takes
as input a set of target pointsX ′ that are visible from at
least one point alongΠi. The output of the subroutine is the
optimal set of viewpointsVi (subject to the condition that
first and last point ofΠi are included) and the optimal cost
Ji of this path. The following lemma proves the correctness
of this algorithm.

Lemma 2 LetX ′ be a set of target points andC be a chain-
visible curve. LetΠi be some path alongC andX ′ ⊆ X be
target points visible fromΠi. If the first and last viewpoints
of Πi are i and j respectively, then Algorithm1 computes
the optimal set of viewpoints and the optimal cost forΠi.

The proof of correctness in given in the appendix.
From Lemma1 we know that all paths in an optimal

solution start and end at the right and left endpoints ofCx.
Denote the set of all right and left endpoints byR andL
respectively. We build a table of size|L| × |R| × m. The
entryT (i, j, k) gives the maximum cost of the firstk paths,
with thekth path starting at somei ∈ R and ending at some
j ∈ L, and allk′ < k paths ending beforei. To correctly fill
in the entryT (i, j, k), we must ensure that there does not
exists anyCx that starts after the(k − 1)th path and ends
beforekth path (Figure4). Let I(j′, i) be a binary indicator
that is1 if there exists aCx that is strictly contained between
pointsj′ andi, i > j′ (but does not containi andj′). LetInf
be a very large number. We computeT (i, j, k) as follows.

Fig. 4. Dynamic Programming. We search for the start and end points for
m paths. Table entryT (i, j, k) gives the cost of thekth part starting ati
and ending inj. We must make sure that there is no pointx such that the
Cx lies completely between the(k − 1)th andkth paths.

Let s be the first point onC. In initializing the entry
T (i, j, k = 1) we must ensure that there is no target such
thatCx ends beforei. Thus, for alli = 1 to |R| and j = 1
to |L| we initialize,

T (i, j, 1) =

{

OPTIMAL SINGLEPATH(i, j) I(s, i) = 0

Inf I(s, i) > 0

To fill the rest of the entries, we first find pointsj′ andi′

given i, j, k,

[j′, i′] = argmin
j′<i,i′≤j′

{T (i′, j′, k − 1) + Inf · I(j′, i)}. (1)

The termI(j′, i) ensures that there is noCx that starts after
j′ but ends beforei. Furthermore, since the(k − 1)th path
ends atj′ < i, we know allCx that start beforej′ will be
covered. This only leaves two types of points to consider:
(i) Cx starts afterj′ but does not end beforei, and (ii) Cx

starts afteri. While filing in T (i, j, k) we first computej′, i′

according to Equation1. Then, we verify if there exists any
point x belonging to either of the two types listed above. If
not, then all points inX have already been covered by the
first k − 1 paths. Hence, we setT (i, j, k) = T (i′, j′, k − 1).
If there is exists a point belonging either of the two types
listed, then

T (i, j, k) = max{OPTIMAL SINGLEPATH(i, j),

T (i′, j′, k − 1)}.

Additionally, if k = m we must check if there is any point
that has not been covered. Lett be the rightmost point of
the curveC. If I(j, t) = 1, we setT (i, j,m) to +Inf.

To recover the final solution, we have to find the entry
T (i, j,m) with the least cost. Using additional book-keeping
pointers, we can recover the optimal solution by standard
dynamic programming backtracking. The following theorem
summarizes our main result for this section.

Theorem 1 There exists a polynomial time algorithm that
finds the optimal solution for Problem1.

The property in Lemma1 allowed us search over a finite
set of points for computing the endpoints of the paths. This
comes from the finiteness of the setX . Now, consider the
case whenall points in a polygon are to be monitored by the
robots. We may have possibly infinite candidate endpoints
for the m optimal paths alongC. Nevertheless, in the next
section we will show how to compute an approximation for
the optimal paths in finite time.

IV. 4–APPROXIMATION FOR STREET POLYGONS

In this section, we present a4–approximation algorithm
for Problem2. The input to the problem is a street polygonP
(see Figure2(b) for an example) and a curveC that satisfies
the chain-visibility property for all points inP . Carlsson and
Nilsson [17] showed that there always exists such a curve
for street polygons, known as the collapsed watchman route.
They also presented an algorithm to compute the smallest set
of discrete viewpoints along such a curve to see every point
in P . As shown in Figure3 constructing paths directly from
the optimal set of discrete viewpoints can lead to arbitrarily
bad solutions for Problem2. Nevertheless, in this section,
we will present an algorithm that yields a4–approximation
starting with the smallest set of discrete viewpoints.

Let gs andgt be the first and last points of the input curve
C. Let p andq by any points onC (p to the left ofq). Let
C[p, q] denote the set of all points onC betweenp and q.
We use the following definition of alimit point of a pointp
adapted from [17].

Definition 2 The limit point of a pointp on C, denoted by
lp(p), is defined as the first point onC to the right of p
such thatlp(p) is the right endpoint ofCx for any x ∈
closure(P \VP(C[gs, p])).1

1The closure of a set of points is the union of the set of points with its
boundary.



In other words,lp(p) is the right endpoint of aCx closest to
p and to its right, such thatx is not visible from any point
to the left ofp, includingp. Figure5 shows an example.

Fig. 5. Limit point lp(p) is the leftmost point to the right ofp that is also
the right endpoint ofCx for somex not in VP(C[gs, p]).

In the previous section, we implicitly used the concept of
a limit point in Line 6 of Algorithm 1. The limit point of
any pointp given a curveC can be computed efficiently in
polynomial time [17], which we will use in our algorithm.
For the first limit point, we have the following result.

Lemma 3 ( [17]) If g1 is the first point onC to the right
gs such thatg1 is the right endpoint ofCx for any x ∈ P ,
thenVP(C[gs, g1]) = VP(g1).

Carlsson and Nilsson [17] also presented an algorithm to
compute the first viewpointg1 satisfying the above condition.

It is easy to see that any solution where the first path starts
beforeg1 can be converted to another valid solution of equal
or less cost where the first path starts atg1. The subroutine
given in Algorithm2 starts withg1 to computem paths. Let
T ∗ be the cost of the optimal solution for some instance of
Problem2. The subroutine takes as input a guess forT ∗,
say T̂ . We first compute the smallest set of viewpointsG∗

sufficient to see every point in the environment using [17].
The rest of the algorithm constructsm paths such that the
cost of each path is at most4T̂ .

Lemma 6 shows if the set of paths computed by the
algorithm does not see every point inP , then our guess for
T ∗ is too small. Thus, we can start with a small initial guess
for T ∗, sayT̂ = tm, and use binary search to determine the
optimal valueT ∗. Since all tours computed cost less than
4T̂ , we obtain a4–approximation when our guesŝT = T ∗.

We first prove that the discrete set of viewpoints computed
by Algorithm 2 are correct.

Lemma 4 Let r be the last point on the last path and
V = ∪Vi be the set of all viewpoints over all paths given by
Algorithm 2. If a point x ∈ P is visible fromC[gs, r], then
x is also visible from the discrete set of viewpointsV .

Proof: Suppose there is a pointx visible fromC[gs, r]
which is not visible from any point inV . Let xl andxr be
the left and right endpoints ofCx. xl must lie to the left of
r sincex is visible fromC[gs, r]. Similarly, xr must lie to
the left of r otherwise sincer ∈ V , x will be covered byr.
From Lemma3 and the fact thatg1 ∈ V , xl must lie to the
right of g1. Thus we haveg1 < xl ≤ xr < r. We omit the
rest of the proof since it is similar to that of Lemma2.

Algorithm 2: STREETSUBROUTINE

Input : P : a street polygon
Input : C: collapsed watchman route fromgs to gt
Input : tm: measurement cost per viewpoint
Input : T̂ : guess for the cost of optimal solution

1 G∗ ← {gi}: smallest set of viewpoints onC ( [17])
2 l← g1
3 for i = 1 to m do
4 r ← point alongC length T̂ away froml (set togt

if no such point exists)
5 V ′

i ← {gi|gi ∈ G∗, l < gi < r}

6 if |V ′
i | >

T̂

tm
then

7 V ′
i ← first ⌈T̂ /tm⌉ viewpoints inV ′

i

8 r ← last point inV ′
i

9 end
10 Πi ← path starting atl and ending atr
11 Vi = {l} ∪ V ′

i ∪ {r} // viewpoints on Πi

12 l← lp(r)
13 end
14 return SUCCESSif ∪VP(Vi) = P , FAILURE otherwise.

Lemma 5 Let Π be the set of paths computed using Algo-
rithm 2 andr be the last endpoint of the rightmost path. Let
Π′ be any set ofm paths withr′ the last endpoint of the
rightmost path, such that all points visible fromC[gs, r

′] are
covered byΠ′. If the cost ofΠ′ is at mostT̂ , thenr′ cannot
be to the right ofr.

Proof: From Lemma3 and the definition of limit point,
we can say that the first path inΠ′ starts fromg1. We will
prove the lemma by induction on the index of the path.
Specifically, we will show that the right endpoint of the
ith path in Π, say Πi, cannot be to the left of the right
endpoint of theith path inΠ′, sayΠ′

i. For ease of notation,
we will refer to the left endpoint of theith path by li and
correspondinglyri.

Base case.We have two possibilities: (i)r1 is T̂ away from
g1, (ii) Π1 contains at least⌈T̂ /tm⌉ viewpoints fromG∗. For
(i), since the cost ofΠ′

1 is at mostT̂ , its length cannot be
greater thanT̂ . Hence,r′1 cannot be to the right ofr1. For
(ii), supposer′1 is to the right ofr1. ThenΠ′

i must contain at
least⌈T̂ /tm⌉ viewpoints from the optimality ofG∗. Thus,
the cost ofΠ′

1 is greater thanT̂ which is a contradiction.
The base of the induction holds.

Inductive step. Suppose thatr′i−1 is to the left or co-
incident with ri−1. We claim that l′i−1 must be to the
left or coincident with li. Suppose not. By construction,
li = lp(ri−1). Let x be a point such thatli is the right
endpoint ofCx andx is not visible fromC[gs, ri−1]. Such
anx always exists according to the definition of a limit point.
Hence,Cx lies completely betweenr′i−1 and l′i implying x
is not covered byΠ′, which is a contradiction. Hence,l′i is
to the left or coincident withli. Now, using an argument



similar to the base case, we can show thatr′i cannot be to
the right ofri proving the induction.

Hence, for alli, r′i cannot be to the right ofri proving
the lemma.

Lemma 6 If Algorithm 2 returns FAILURE then T̂ < T ∗.

Proof: SupposeT ∗ ≤ T̂ . Let Π∗ be the optimal set of
m paths. Letr andr∗ be the rightmost points onΠ andΠ∗

respectively. From Lemma5, we knowr∗ cannot be to the
right of r.

Algorithm 2 returns FAILURE when there exists some
point, sayx ∈ P , not covered byΠ. From Lemma4, x
must not be visible fromC[gs, r]. Thus,x cannot be visible
from C[gs, r

∗]. Hence, the optimal set of paths do not see
every point inP which is a contradiction.

We now bound the cost of the solution produced by our
subroutine.

Lemma 7 The maximum cost of any path produced by
Algorithm 2 is at most4T̂ .

Proof: By construction, the length of any path is at most
T̂ . The number of measurements are at most⌈T̂ /tm⌉+2 ≤
3T̂ /tm. Hence, the cost of any path is at most4T̂ .

Combining all the above lemmas, we can state our main
result for this section.

Theorem 2 There exists a4–approximation for Problem2.

The minimum number of discrete viewpoints|G∗| can
be significantly larger than the number of vertices of the
polygon. G∗ can be computed in time polynomial in the
input size (i.e., the number of sides in the input polygon)
and the output size (i.e.,|G∗|). Consequently, the running
time for each invocation of the subroutine in Algorithm2
is also polynomial in the input and output size. The optimal
valueT ∗ can be computed inO(logT ∗) invocations of the
subroutine via binary search. We can reduce the overall
running time by terminating the binary search early, at the
expense of the approximation factor.

V. SIMULATIONS

In this section, we report results from simulations using
the optimal algorithm presented in SectionIII . The algorithm
was implemented in MATLAB using the VisiLibity [20]
library for floating-point visibility computations. The polyg-
onal environment shown in Figure6(a)was used to generate
all the simulation instances.

The simulation results are presented in Figure6. The plots
show mean and standard deviation of the costs for 50 trials.
The positions of the targets are randomly generated for each
trial. All target locations are generated such that they satisfy
the chain-visibility property with respect to the the dashed
path shown in Figure6(a). The measurement timetm was
set to1 s for all trials.

Figure 6(b) shows the effect of varying the number of
robots on the optimal cost (makespan). 15 target locations
are randomly generated for each trial. Figure6(c) shows
the effect of varying the number of targets. The number of

robots were fixed to 3. Figure7 shows the computation time
required for running the dynamic programming, as a function
of the number of robots and the targets.
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Fig. 7. Computation time as a function of the number of robotswith 15
targets (left), and as a function of the number of targets with 3 robots (right).

VI. D ISCUSSION

Our approach in this paper was to formulate a geometric
version of the persistent monitoring problem, abstracting
away some of the more practical concerns. Even with
this formulation, the problem turns out to be challenging.
Geometric abstractions allow us to focus on the inherent
challenges of the problem without the additional practical
complexities. In the rest of this section, we first discuss
how our work can be extended to handle the practical
complexities. We then highlight some related open problems.

A. Practical Extensions

The analysis presented in this paper is based on the key
property of chain-visibility that is satisfied by limited classes
of environments. In particular, for Problem2 we require
the environment to be a street polygon. One approach of
extending our algorithm for general environments would be
to first decompose the environment into street polygons,
and then apply our algorithm separately in each component.
While algorithms for decomposition into street polygons are
not known, there is an optimal algorithm for decomposing a
polygon without holes into the fewest number of monotone
subpolygons [21]. The class of monotone polygons are
included in the class of street polygons, and thus can be used
as valid inputs to our algorithm. However, the approximation
guarantee will in general not hold.

We can address practical constraints, e.g., robot dynamics,
finite extents, etc., by starting with the geometric solutions
given in this paper and refining them to incorporate the con-
straints. Such a two-level refinement approach was presented
by Turpin et al. [22] for the related problem of assigning goal
positions and trajectories to teams of robots with complex
dynamics and strict collision avoidance constraints. We will
adapt these refinements as part of our future work on
experimental evaluation on a system of MAVs. Our ongoing
efforts on implementation in simulated environments can be
seen in the accompanying video.

B. Open Problems

The main open problem from a theoretical standpoint is
whether there are polygons for which we can compute op-
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Fig. 6. (a) Representative simulation instance. The targetpoints (⋆) are generated randomly for each trial within the polygonalenvironment. (b) Varying
the number of robots on the optimal solution cost (makespan). The number of targets is fixed to 15 for all trials. (c) Varying the number of targets on the
optimal solution cost (makespan). The number of robots is fixed to 3 for all trials.

timal solutions or constant-factor approximations for watch-
men routes without requiring a candidate input curve. One
possible approach would be to determine settings in which
we can first compute a discrete set of viewpoints and then
find m paths to visit them. There are existing algorithms for
finding m paths of minimum maximum length to visit a set
of points (see e.g., [23]). The key property would be to show
that a tour restricted to the discrete set of viewpoints thus
computed is at most a constant factor away from an optimal
tour. The approximation algorithm presented in SectionIV
follows this principle. Investigating similar results forricher
environments is part of our ongoing work.

VII. C ONCLUSION

In this paper, we introduced a new formulation for persis-
tent monitoring problems. The typical objective in persistent
monitoring is to find robot tours that visit a set of target
points in an environment. In this paper, we relax this con-
straint and seek to find robot tours that only need to visit
locations that can see the targets. The objective is to findm
robot paths such that every target is seen by at least one robot
and the maximum path cost is minimized. This formulation
generalizes two well-known NP-hard problems, namely the
Art Gallery Problem and the Generalized Watchman Route
Problem. Nevertheless, in this paper we characterize the class
of environments for which we can obtain strong perfor-
mance guarantees. Specifically, we show that if the paths
are restricted to a curve satisfying a special property, termed
chain-visibility, then we obtain algorithms with suboptimality
bounds.
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APPENDIX

PROOF OFLEMMA 1

Proof: Consider the case whenv is the left endpoint
of a path Πi in an optimal solution. We will prove by
contradiction. If v is not also the right endpoint of some
Cx, then find the first right endpoint, sayv′, of someCx

that is to the right ofv along C. All points in X visible
from v are also visible fromv′. Thus, we can letv′ be the
new left endpoint ofΠ∗

i to give a valid solution of lesser
length, i.e. lesser cost, which is a contradiction. The casefor
the right endpoint is symmetrical.

PROOF OFLEMMA 2

Proof: We first verify that all targets inX ′ will be
covered by the algorithm (and thus the algorithm terminates).
Suppose not. Letx be a target that is not covered. By
definition of X ′, Cx intersects withΠi. Let xl and xr be
the left and right endpoints ofCx. If xl is to the left of i,
thenx is visible fromi and will be marked covered. Ifxr is
to the right ofj, thenx is visible fromj and will be marked
covered. Hence,xl andxr lie betweeni andj.

Consider the closest viewpoint inVi lying to the left ofxl,
sayv (we know at least one such viewpoint exists, namelyi).
Let v′ be the first viewpoint inV to the right ofv (we know
at least one such viewpoint exists, namelyj). Now v′ cannot
be to the left ofxl, elsev is not the closest viewpoint to the
left of xl. Similarly, v′ cannot be to the right ofxr sincev′

will not satisfy the condition in Line6 in Algorithm 1. This
leaves the case wherev′ is betweenxl andxr, in which case
x is visible from a viewpoint inVi.

Next, we verify that the optimal set of viewpoints and cost
is correctly computed. The length ofΠi is fixed sincei and
j are given as input. LetX ′′ be the subset ofX ′ such that
any x ∈ X ′′ is not visible from eitheri or j. It remains to
show that|Vi \ {i, j}| is the least number of measurements
required to coverX ′′. Denote the viewpoints inVi \{i, j} by
v1, . . . , vn. Along with i andj, this definesn+1 partitions:
[v0 := i, v1], [v1, v2], . . . , [vn, vn+1 := j].

For contradiction, suppose there is aV ′ = {v′i} with n−1
viewpoints that coverX ′′. Then, there must exist at least one
[vi, vi+1] partition that does not contain anyv′j . From Line6,
this implies that there is some pointx whose interval lies
completely between two consecutive viewpoints inV ′. Thus,
V ′ does not cover all elements inX which is a contradiction.
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