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Abstract— We study the problem of planning paths for a
team of robots motivated by coverage, persistent monitorig
and surveillance applications. The input is a set of target pints
in a polygonal environment that must be monitored using robds
with omni-directional cameras. The goal is to compute pathgor
all robots such that every target is visible from at least ongath.
The cost of a path is given by the weighted combination of the
length of the path (travel time) and the number of viewpoints R1
along the path (measurement time). The overall cost is given
by the maximum cost over all robot paths and the objective is
to minimize the maximum cost.

In its general form, this problem is NP-hard. In this paper,
we present an optimal algorithm and a constant factor approx
imation for two special versions of the problem. In both cass,
the paths are restricted to lie on a pre-defined curve in the
polygon. We show that if the curve satisfies a special propeyt  Fig. 1. Problem formulation. We are given a set of target {so®) in a
termed chain-visibility, then there exists an optimal algorithm  polygonal environment. Our goal is to find paths (- — —) and discrete
for monitoring a given set of target locations. Furthermore if  viewpoints on the pathdl) such that each target is seen from at least one
we restrict the input polygon to the class of street polygonghen  viewpoint. Here,R; seest; andta, Ro seests andts, and i3 seests—ts.
we present a constant-factor approximation which is appliable ~ The cost of a path is a weighted combination of its length/@réime) and
even if the set of target locations is the entire polygon. In the number of viewpoints (measurement time). A path mayisong only
addition to theoretical proofs, we also present results frm  ©n€ Point. The objective is to minimize the maximum path cost
simulation studies.

. INTRODUCTION the speed of the robot must be optimized to minimize the
gaximum weighted latency. Cassandras et al. [8] presented
an optimal control approach to determine the speed profiles
for multiple robots when their motion is constrained to a
given curve. Yu et al. [9] presented an optimal solution for

surveillance, infrastructure inspection [1], and envimemtal COMPUting speed profiles for a single robot moving along a
monitoring [2]. These problems have received significarﬁ'osed curve to sense the maximum number of stochastically

interest recently [3]—[5], thanks in part, to the technata a_rriv_ing events on a curve. Pasqu_alet_ti et al. [10] pre$i?nte
advances that have made it easy to rapidly deploy tearflistributed cqntrol laws for coordination between mutipl
of robots capable of performing such tasks. For exampléoPOts patrolling on a metric graph. _

Michael et al. [6] demonstrated the feasibility of carrying !N thiS paper, we consider a richer version of the problem

out persistent monitoring tasks with a team of Micro AerialVh€re the points to be visited by the robot are not given,
Vehicles (MAVs) with onboard cameras. and instead must be computed based on visibility-based

Persistent monitoring problems are typically studied whef€"SIng. We are given a set of target points in a polygonal
the points of interest are given as input. The points ma9nV|r0nment. Each robot carries an omnidirectional camera
have associated weights representing their importance. 3d can see any target as long as the straight line joining
common objective is to find the order of visiting the pointde€M is not obstructed by the boundary of the polygon. Our

that minimizes the weighted latency. Alamdari et al. [7)90@! iS to compute paths forn robots, so as to ensure that

showed that this problem is NP-hard and presentedlogo egch target is seen from at least one point on some path.
factor approximation algorithms. In many settings, thenpatr19uré 1 shows an example scenario for = 3.
to be followed by the robots is given as input as well and Our problem is a generalization of the Art Gallery Problem
(AGP) [11] and the Watchman Route Problem (WRP) [12].
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We study the problem of planning paths for teams o
robots for visibility-based persistent monitoring in cdep
environments. Visibility-based monitoring problems com
monly occur in many applications such as security an



optimal algorithm for solving WRP in polygons without this curve and corresponding viewpoints to see every point
any holes [13] and & (log®n) approximation algorithm in X. We show that if the sefX and the curve satisfy a
for n-sided polygons with holes [14]. Carlsson et al [13]property, termedchain-visibility, then this problem can be
introducedm—WRP where the goal is to finoh tours such solved optimally.

that each point in the environment is seen from at least Orbeefinition 1 Let X be a set of points and’ be some curve
tour. The objective is to minimize the total length of P

tours. They showed that the problem is NP-hard (in fac{T a 2D. enwrc_)nment. The paifx, C.).'S.’.Sél'd to be chain
no approximation guarantee is possible) visible if the intersection of the visibility polygon of any

Using the length of a tour as the cost is reasonable whéint« € X W'th. C, l.e., VP(z) N X is either empty or
connected chain.

a robot is capable of obtaining images as it is moving"fl
However, in practice, obtaining high-resolution imageslevh Although restrictive, the chain-visibility property istisdied
moving may lead to motion blur or cause artifacts to appeay various curves. Figurg shows some examples.

due to rolling shutter cameras. This is especially the case Chain-visibility was used by Carlsson and Nilsson [17]
when MAVs are to be used. It would be desirable for theg show that there always exists @llapsed watchman
robot to stop to obtain a measurement. Instead of findingath satisfying chain-visibility in street polygons. A street
a continuous path, we would like to find a set of discretgolygon is a polygon without holes with the property that
viewpoints onm paths. The cost of a path can be modeled &g boundary can be partitioned into two chaifis,and D,
the weighted sum of the length of the path (travel time) angind any point iri/ is visible from some point irD and vice

the number of measurements along the path (measuremggisa. Figure(b) gives an example. We give more examples
time). Wang et al. [15] first introduced this objective funat  of chain-visibility in the following proposition.

for WRP for the case of a single robot and termed it the - ) ) ) )
Generalized WRP (GWRP). They showed that GWRP iBroposition 1 Thefollqwmg pairs o.fta.rg.et_ pomts of interest
NP-hard and presented @(polylogn) approximation for X and curvesC all satisfy the chain-visibility property:
the restricted case when each viewpoint is required to seee X is any set of points in a street polygon aadis a
a complete polygon edge. Fekete et al. [16] presented an collapsed watchman route.
approximation algorithm for the special case of rectilinea « X is any set of points in a polygon without holes and
grid polygons and unit sensing range for a single robot. C' is the shortest path between any pair of pointnd

In this paper, we introduce the robot version of GWRP. t in the polygon. In particularC' can be a straight line
This problem in general is NP-hard since it generalizes within the polygon.
the NP-hard problems of GWRP and-WRP. Hence, we « X is any set of points on a 1.5D terrain ard is a
consider special instances of the problem and present a fixed altitude path.
number of positive result§_|n these d|rec_t|ons. In particul Naturally, if the intersection of the visibility region of a
we characterize the conditions under which the problem has . . . .
an optimal algorithm (Sectiotll) and a constant-factor ap- ppmt W'th C s empty, we W'!l not be ab_Ie to compute a
proximation algorithm (SectiotV). In addition to theoretical viewpoint onC’ to see the point. Hence, in the rest of the

analysis, we perform simulations to study the effect of thg{aper, we consider only those situations where each point in

number of robots and targets on the optimal cost (Se&tipn ~. IS .V.IS'ble from some point it W.h"e satisfying the chal_n-
We formally state the problems considered in this paper aﬁ/(lis'b'“ty pro.per.ty. Formally, the first problem we conside
our contributions in the following section. Is the following:
Problem 1
Input: set of points of interesK and a curveC such that

The environmentP is an n-sided 2D polygon without (X,C) are chain-visible
holes (in one of the problems we consider a 1.5D terraiQutput: m pathsII = {IL;|TT; C C} each with viewpoints
environment). We are given a set of target poikitsvithin P.  V; where for allz € X we haver € UVP(V}).
We havem robots each carrying an omnidirectional camerapbjective: minimize max (I(TL;) + |Viltm)-
Let each robot travel with unit speed and let the time t o . el
obtain an image be,,. Let IT; denote both theé*” path and
V; denote the discrete set of viewpoints along this path. L8the optimal algorithm for this problem is given in Sec-
IT denote the collection ofn paths. LetVP(p) denote the tion IlI.
visibility polygon of a pointp in P and VP(V;) denote the In the second problemX is simply the set of all points
union of visibility polygons of all viewpoints oml;. in the polygon. Our goal is to findn paths, restricted to

In this paper, we study two problems for visibility-baseda chain-visible curve, so as to monitor every point in the
persistent monitoring. In the first problem, we are given a@nvironment. Here, we focus on the case of street polygons
curve in the polygon along which we must determine the sethere we know there always exists a curve, namely the
of viewpoints. The curve can be, for example, the boundampllapsed watchman route, that is chain-visible for any
of the environment for border patrolling, or a safe navigiati subset of points in the polygon [17]. Street polygons have
path within the environment. The goal to find paths along previously been studied in the context of robot navigation i

Il. PROBLEM FORMULATION

Lontribution: Optimai algorithm (Sectiotll).



(b) ©

Fig. 2. Examples of curves and environments satisfying tancvisibility property (Definitionl). (a) Shortest path between any two points in a polygon
without holes. (b) A collapsed watchman route in a streeygmi. (c) 1.5D terrain with a fixed altitude path.

unknown environments [18], [19]. VP(z) with C, wherex is some point inX. Let C,, denote
the segmenVP (z) NC for x € X. For ease of notation, we
Problem 2 . . . . :
. L will assign an ordering of points on the cur¢e This allows
Input: street polygon?” and a chain-visible curve’ us to define the left and right endpoints 0y, (equivalentl
Output: m pathsII = {IL;|TI; C C} each with viewpoints g P b (€q Y

V; where for allz € X we haver ¢ UVP(V;). first and last points of”, alongC). We have,

Objective: minimize Imax (I(IL;) + |Viltm)- Lemma 1 There exists an optimal solution for Problem

Contribution: 4—approximation algorithm (Sectiokv). with viewpointsl’* such that for any € V*, if v is the left
, . ) (respectively, right) endpoint of some pdili, thenv must

C_:arlsson and Nilsson [17] pr_esent_ed an optimal algorithm 9, the right (respectively, left) endpoint of sorfie.

find the fewest number of viewpoints aloidg to see every

point in P. One way to compute paths would be to firstThe proof is given in the appendix.

find this smallest set of viewpoints and then distribute them This lemma allows us to restrict our attention only to
into m paths. Unfortunately, this approach can lead to pathe set of finite (at mos2|X|) points onC. Furthermore,
that are arbitrarily longer and consequently arbitrarigree  we need to consider only the right endpoints of @l for
than optimal paths (Figur8). Nevertheless, we present astarting a path, and only the left endpoints for ending a
4—approximation algorithm for Proble2 path. We will use dynamic programming to find the optimal
starting and ending points of. paths. Before we describe
the dynamic programming solution, we present a subroutine
that is useful in computing the cost of a path when the first
and last viewpoint on the path is given.

= 1.0 Algorithm 1: OPTIMAL SINGLEPATH
Input: 4, 5: first and last viewpoints for a pathi; on C

Fig. 3. Problem2. The optimal solution withm = 2 paths consists of Input: X': set of target points such that
two short paths with two viewpointsT() each. However, first finding the Vo € X', VP(x) NI # 0

minimum number of discrete viewpoint®] on the input curve”' and then Sy : : ; )
finding them = 2 paths to visit them may give arbitrarily long solutions Output: V;: optimal set of viewpoints offl; to cover

(at least one path will have to visit twe). X’ (including i and )
Output: J;: optimal cost forll; to coverX’

I11. OPTIMAL ALGORITHM WHEN GIVEN A SET OF 1 Mark all points in.X" as uncovered
' 2 Mark all points in X’ visible from either: or j as

TARGETS AND CHAIN-VISIBLE CURVE
covered

In this section, we present an optimal algorithm for solvings v . (; j1
Probleml. Here, we are given as input a set of poiafsn =, ,, . ;
ann-sided 2D polygon that must be visually monitored. The; while 3 an uncovered point inY’ do
goal is to find a set of viewpointg along withm watchmen q + first point to the right ofp such thatg is the
paths that visitl’. The watchmen paths are restricted to an right endpoint ofC, for some uncovered € X’
input curveC' that along with.X satisfies the chain-visibility - Vi + ViU {q}
property (Definition1). In this section we show how to g Mark all z € X' visible from ¢ as covered
computeV and find them watchmen paths optimally. 9 pgq
In general, the viewpoint¥” can be anywhere along, 5 end
l.e., no finite candidate set for is given. We will first o, 7. — i(11,) + |Vi[t,,
establish that there always exists an optimal solution i3 returnV; andJ;
which V' is restricted to either endpoint of the intersection of




The subroutine given in Algorithrh takes as input a path starts after. While filing in T'(i, 7, k) we first computg’, i’
II; defined by its first and last viewpoint d@ii. It also takes according to Equatiod. Then, we verify if there exists any
as input a set of target point&’ that are visible from at point z belonging to either of the two types listed above. If
least one point alongl;. The output of the subroutine is the not, then all points inX have already been covered by the
optimal set of viewpointd/; (subject to the condition that first k — 1 paths. Hence, we st(i, j, k) = T(i',j’, k — 1).
first and last point ofI; are included) and the optimal costIf there is exists a point belonging either of the two types
J; of this path. The following lemma proves the correctnesksted, then

of this algorithm.
T(i,j, k) = max{OPTIMAL SINGLEPATH (i, j),

Lemma 2 Let X’ be a set of target points ar@d be a chain- TG,k —1)}

visible curve. Lefll; be some path along and X’ C X be o '

target points visible fronil;. If the first and last viewpoints  Additionally, if £ = m we must check if there is any point
of II; are 7 and j respectively, then Algorithrh computes that has not been covered. Liebe the rightmost point of
the optimal set of viewpoints and the optimal costIr the curveC. If I(j,t) = 1, we setT'(i,j,m) to +1 nf .

To recover the final solution, we have to find the entry
T'(i,j, m) with the least cost. Using additional book-keeping
pointers, we can recover the optimal solution by standard
dynamic programming backtracking. The following theorem
summarizes our main result for this section.

The proof of correctness in given in the appendix.

From Lemmal we know that all paths in an optimal
solution start and end at the right and left endpoint&pf
Denote the set of all right and left endpoints Byand L
respectively. We build a table of sizé| x |R| x m. The
entry T'(i, j, k) gives the maximum cost of the firtpaths, Theorem 1 There exists a polynomial time algorithm that
with the k" path starting at somec R and ending at some finds the optimal solution for Problem

j € L,and allk’ < k paths ending beforé To correctly fill i .
in the entryT'(i, j, k), we must ensure that there does not The property in Lemmd. allowed us search over a finite

exists anyC, that starts after thék — 1) path and ends set of points for cpmputing the endpoints of the paths. This
beforek!” path (Figured). Let (5, ) be a binary indicator comes from the finiteness of the s& Now, consider the
that is1 if there exists &, that is strictly contained between case wherall points in a pon.gon.arg .to be mqmtored by the
pointsj’ andi, i > j’ (but does not containand;’). Let! nf robots. We may have possibly infinite candidate endpoints

be a very large number. We compuiéi, j, k) as follows for the m optimal paths alond’. Nevertheless, in the next
' o " section we will show how to compute an approximation for

the optimal paths in finite time.

IV. 4—APPROXIMATION FOR STREET POLYGONS

(N
B Moo u-w--a--C In this section, we present 4-approximation algorithm
! J ! J for Problem2. The input to the problem is a street polygBn
T(i''k-1) T(i,j;k) (see Figure@(b) for an example) and a curv@ that satisfies

Fig. 4. Dynamic Programming. We search for the start and eitspfor th.e chain-visibility property for all points mP._ Carlsson and
m paths. Table entryf’(i, j, k) gives the cost of thé:" part starting ai ~ Nilsson [17] showed that there always exists such a curve
and ending iny. We must make sure that there is no painsuch that the — for street polygons, known as the collapsed watchman route.
C lies completely between thes —1)™ and k™ paths. They also presented an algorithm to compute the smallest set
. ) . of discrete viewpoints along such a curve to see every point
Let s be the first point onC. In initializing the entry i, pag shown in Figure constructing paths directly from
T'(i,j.k = 1) we must ensure that there is no target sUCkhe gptimal set of discrete viewpoints can lead to arbiyari
that C, ends before. Thus, for alli = 1to [R| andj =1  paq solutions for Problerg. Nevertheless, in this section,
to |L| we initialize, we will present an algorithm that yields4a-approximation
starting with the smallest set of discrete viewpoints.
T(i,j,1) = { Let gs andg; be the first and last points of the input curve
C. Letp andq by any points onC' (p to the left ofq). Let
To fill the rest of the entries, we first find poingsandi’  C[p 4] denote the set of all points ofi betweenp and g.
giveni, j, k We use the following definition of &mit point of a pointp
adapted from [17].

OPTIMAL SINGLEPATH(7,5) I(s,i) =0
I nf I(s,7) >0

i1 = in{T(@' 7 k—1)+1Inf -I(5,9)}. (1
7] fi%?l;l{ (0.7 Jinf- 1D @) Definition 2 The limit point of a poinp on C, denoted by

o . Ip(p), is defined as the first point of' to the right ofp
m !/

'I;hg tter é(jt;lz‘ erFSLIJ:restfhthat there 1S r@ihthat sltatr}fs afttﬁr such thatip(p) is the right endpoint ofC, for any = €
j' but ends before. Furthermore, since thé — 1)"" pa closure(P \ VP(C[gs,p])).t

ends atj’ < i, we know allC,, that start beforg’ will be
Clovered' This Only leaves two types of points to POHSIder: 1The closure of a set of points is the union of the set of poirith its
() C, starts afterj’ but does not end beforg and (ii) C,  boundary.



In other words/p(p) is the right endpoint of &', closest to
p and to its right, such that is not visible from any point
to the left ofp, includingp. Figure5 shows an example.

Algorithm 2: STREETSUBROUTINE

Input: P: a street polygon
Input: C: collapsed watchman route from to g;

Input: t,,: measurement cost per viewpoint

Input: T guess for the cost of optimal solution
1 G* + {g;}: smallest set of viewpoints o ( [17])
21+ ¢
3 for i =1 tom do
4 r + point alongC length7" away from! (set tog,
if no such point exists)
5 Vi’<—{gi|g¢€G*,l<gi<r}

. T
if |V/]> . then

V! « first [T'/t,,| viewpoints inV/

r + last point inV/
end
I1; < path starting at and ending at
Vi={lyuv/u{r} [/ viewpoints on II;
L+ Ip(r)
13 end
14 return Sccessif UVP(V;) = P, FAILURE otherwise.

Fig. 5. Limit pointip(p) is the leftmost point to the right gf that is also
the right endpoint o’ for somexz not in VP (Cgs, p]). 7

In the previous section, we implicitly used the concept oti3
a limit point in Line 6 of Algorithm 1. The limit point of ,,
any pointp given a curveC' can be computed efficiently in |,
polynomial time [17], which we will use in our algorithm. ,
For the first limit point, we have the following result.

Lemma 3 ( [17]) If g; is the first point onC to the right
gs such thatg; is the right endpoint of”, for anyz € P,
then VP (Clgs, g1]) = VP(g1).

Carlsson and Nilsson [17] also presented an algorithm to u
compute the first viewpoing satis_fying the abovg condition. | amma 5 Let IT be the set of paths computed using Algo-

Itis easy to see that any solution where the first path starfg,m 5 and - be the last endpoint of the rightmost path. Let
beforeg, can be convertgd to another valid solution of gqu%, be any set ofn paths withs the last endpoint of the
or less cost where the first path startgyat The subroutine rightmost path, such that all points visible frafi{g,, '] are

given in Algorithm2 starts withg, to computem paths. Let  .Juareq byiT'. If the cost ofll’ is at most7’, thenr’ cannot
1™ be the cost of the optimal solution for some instance g, (4 the right ofr

Problem?2. The subroutine takes as input a guess fot
say 1. We first compute the smallest set of viewpoiis Proof: From Lemmeé3 and the definition of limit point,
sufficient to see every point in the environment using [17)we can say that the first path i’ starts fromg,. We will
The rest of the algorithm constructs paths such that the prove the lemma by induction on the index of the path.
cost of each path is at most’. Specifically, we will show that the right endpoint of the
Lemma 6 shows if the set of paths computed by thei®” path inII, sayII;, cannot be to the left of the right
algorithm does not see every point iy then our guess for endpoint of thei’” path inII’, sayII;. For ease of notation,
T* is too small. Thus, we can start with a small initial guessve Wwill refer to the left endpoint of the!” path byl; and
for T*, sayT = t,,, and use binary search to determine th€orrespondingly-;. R
optimal valueT™*. Since all tours computed cost less than Base caseWe have two possibilities: (i), is 7" away from
4T, we obtain ai—approximation when our guegs= T*. g1, (ii) II; contains at leastl’/¢,, | viewpoints fromG*. For
We first prove that the discrete set of viewpoints compute(), since the cost ofl} is at most7', its length cannot be
by Algorithm 2 are correct. greater thari’. Hence,r; cannot be to the right of;. For
(if), supposer] is to the right ofr;. ThenlI; must contain at

Lemma 4 Let r be the last point on the last path andleast [T/t,,] viewpoints from the optimality of7*. Thus,

V= UV; be the set of all viewpoints over all paths given by, "t o7 i greater thari” which is a contradiction
Algorithm 2. If a pointx € P is visible fromC|gs, r|, then The base of %he induction holds '

x is also visible from the discrete set of viewpoifits Inductive step. Suppose that’._, is to the left or co-

incident with r,_;. We claim thatl;_, must be to the
left or coincident withi;. Suppose not. By construction,
l; = Ip(r;—1). Let = be a point such that; is the right
endpoint ofC,, and z is not visible fromC/[gs, ;—1]. Such
anz always exists according to the definition of a limit point.
Hence,C, lies completely between,_, andl; implying x

is not covered byI’, which is a contradiction. Hencé, is

to the left or coincident with/;. Now, using an argument

Proof: Suppose there is a pointvisible from C|[gs, 7]
which is not visible from any point iV, Let 2; andz, be
the left and right endpoints af',. x; must lie to the left of
r sincex is visible from C[gs, r]. Similarly, 2, must lie to
the left of r otherwise since € V', x will be covered byr.
From Lemma3 and the fact thay, € V, x; must lie to the
right of g;. Thus we havey; < z; < z,. < r. We omit the
rest of the proof since it is similar to that of Lemrda



similar to the base case, we can show tHatannot be to robots were fixed to 3. Figuré shows the computation time

the right of ; proving the induction. required for running the dynamic programming, as a function
Hence, for alli, r; cannot be to the right of; proving of the number of robots and the targets.
the lemma. [ ]

Lemma 6 If Algorithm 2 returns FAILURE thenT" < T™*.

c)

Proof: Supposel™ < T'. Let IT* be the optimal set of
m paths. Letr andr* be the rightmost points ol andIT*
respectively. From Lemm&§, we knowr* cannot be to the
right of r.

Algorithm 2 returns RILURE when there exists some
point, sayx € P, not covered byll. From Lemma4, z
must not be visible fronC|[g,, r]. Thus,z cannot be visible Fig. 7. Computation time as a function of the number of rolwith 15
from C[gs’ r*]. Hence, the optimal set of paths do not sedargets (left), and as a function of the number of targeth &itobots (right).

Cost of Optimal Solution (se
Computation Time (sec)

2 3 0 s o T R TR T W m
Number of Robots Number of Targets

every point inP which is a contradiction. [ |
We now bound the cost of the solution produced by our
subroutine. VI. DISCUSSION
Lemma 7 The maximum cost of any path produced by Our approach in this paper was to formulate a geometric
Algorithm 2 is at most47". version of the persistent monitoring problem, abstracting

away some of the more practical concerns. Even with

_ Proof: By construction, the length of any path is at mostpjs formulation, the problem turns out to be challenging.
T'. The number of measurements are at nj@stt,.| +2 <  Geometric abstractions allow us to focus on the inherent

3T/t Hence, the cost of any path is at mdst. B challenges of the problem without the additional practical
Combining all the above lemmas, we can state our magymplexities. In the rest of this section, we first discuss
result for this section. how our work can be extended to handle the practical

Theorem 2 There exists al—approximation for Problen2. ~ complexities. We then highlight some related open problems

The minimum number of discrete viewpoint&*| can A. Practical Extensions
be significantly larger than the number of vertices of the The analysis presented in this paper is based on the key
polygon. G* can be computed in time polynomial in theproperty of chain-visibility that is satisfied by limitedasises
input size (i.e., the number of sides in the input polygonyf environments. In particular, for Proble we require
and the output size (i.e|*[). Consequently, the running the environment to be a street polygon. One approach of
time for each invocation of the subroutine in Algorith2n extending our algorithm for general environments would be
is also polynomial in the input and output size. The optimajo first decompose the environment into street polygons,
value T can be computed id(log7) invocations of the and then apply our algorithm separately in each component.
subroutine via binary search. We can reduce the overaNhile algorithms for decomposition into street polygone ar
running time by terminating the binary search early, at thaot known, there is an optimal algorithm for decomposing a
expense of the approximation factor. polygon without holes into the fewest number of monotone
subpolygons [21]. The class of monotone polygons are
included in the class of street polygons, and thus can be used

In this section, we report results from simulations usings valid inputs to our algorithm. However, the approximatio
the optimal algorithm presented in Sectidh The algorithm  guarantee will in general not hold.
was implemented in MATLAB using the VisiLibity [20]  we can address practical constraints, e.g., robot dynamics
library for floating-point visibility computations. The h@-  finite extents, etc., by starting with the geometric solsio
onal environment shown in Figu{a)was used to generate given in this paper and refining them to incorporate the con-
all the simulation instances. straints. Such a two-level refinement approach was presente

The simulation results are presented in Figér&he plots by Turpin et al. [22] for the related problem of assigninglgoa
show mean and standard deviation of the costs for 50 trialgesitions and trajectories to teams of robots with complex
The positions of the targets are randomly generated for eaghinamics and strict collision avoidance constraints. W wi
trial. All target locations are generated such that theisBat adapt these refinements as part of our future work on
the chain-visibility property with respect to the the dabheexperimental evaluation on a system of MAVs. Our ongoing
path shown in Figuré(a) The measurement timg, was efforts on implementation in simulated environments can be

set tols for all trials. seen in the accompanying video.
Figure 6(b) shows the effect of varying the number of

robots on the optimal cost (makespan). 15 target locatiofs ©Open Problems
are randomly generated for each trial. Figwe) shows The main open problem from a theoretical standpoint is
the effect of varying the number of targets. The number ofhether there are polygons for which we can compute op-

V. SIMULATIONS
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(a) Representative simulation instance. The tgugetts ¢) are generated randomly for each trial within the polygaralironment. (b) Varying

the number of robots on the optimal solution cost (makespBmg number of targets is fixed to 15 for all trials. (c) Varyithe number of targets on the

optimal solution cost (makespan). The number of robots idfito 3 for all trials.

timal solutions or constant-factor approximations forehat  [4]
men routes without requiring a candidate input curve. One
possible approach would be to determine settings in which
we can first compute a discrete set of viewpoints and ther)
find m paths to visit them. There are existing algorithms for
finding m paths of minimum maximum length to visit a set

of points (see e.g., [23]). The key property would be to showg
that a tour restricted to the discrete set of viewpoints thus
computed is at most a constant factor away from an optimaﬂn
tour. The approximation algorithm presented in Sectign
follows this principle. Investigating similar results facher

environments is part of our ongoing work. ]
VIl. CONCLUSION

In this paper, we introduced a new formulation for persis-[g]

tent monitoring problems. The typical objective in pelesigt
monitoring is to find robot tours that visit a set of targef10]
points in an environment. In this paper, we relax this con-
straint and seek to find robot tours that only need to visjt
locations that can see the targets. The objective is tosfind
robot paths such that every target is seen by at least oné roBg!
and the maximum path cost is minimized. This formulatiorm]
generalizes two well-known NP-hard problems, namely the
Art Gallery Problem and the Generalized Watchman Route
Problem. Nevertheless, in this paper we characterize #ss cl [14
of environments for which we can obtain strong perfor-
mance guarantees. Specifically, we show that if the patlis]
are restricted to a curve satisfying a special propertynéer
chain-visibility, then we obtain algorithms with subopétfity
bounds. [16]
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APPENDIX
PROOF OFLEMMA 1

Proof: Consider the case whenis the left endpoint
of a pathIl; in an optimal solution. We will prove by
contradiction. Ifv is not also the right endpoint of some
C,, then find the first right endpoint, say, of someC,
that is to the right ofv along C. All points in X visible
from v are also visible from/’. Thus, we can let’ be the
new left endpoint ofll} to give a valid solution of lesser
length, i.e. lesser cost, which is a contradiction. The éase
the right endpoint is symmetrical.

[ |

PROOF OFLEMMA 2

Proof: We first verify that all targets inX’ will be
covered by the algorithm (and thus the algorithm terminates
Suppose not. Letr be a target that is not covered. By
definition of X’, C, intersects withll;. Let ; and z, be
the left and right endpoints af',. If z; is to the left ofi,
thenz is visible from: and will be marked covered. !f, is
to the right ofj, thenx is visible from; and will be marked
covered. Hencey; andx,. lie betweeni and ;.

Consider the closest viewpoint Irj lying to the left ofz;,
sayv (we know at least one such viewpoint exists, nanigly
Let v’ be the first viewpoint i/ to the right ofv (we know
at least one such viewpoint exists, namglyNow v’ cannot
be to the left ofz;, elsewv is not the closest viewpoint to the
left of ;. Similarly, v' cannot be to the right aof,. sincev’
will not satisfy the condition in Liné in Algorithm 1. This
leaves the case wheréis betweenr; andz,., in which case
2 is visible from a viewpoint inV;.

Next, we verify that the optimal set of viewpoints and cost
is correctly computed. The length of; is fixed sincei and
j are given as input. LeX” be the subset ok’ such that
any z € X" is not visible from either or j. It remains to
show that|V; \ {i,j}| is the least number of measurements
required to coveX”. Denote the viewpoints ii; \ {4, j} by
v1, ..., U,. Along with 4 andj, this defines: + 1 partitions:
[vo := 1, v1], [v1,02], ..., [Un, Unt1 == J].

For contradiction, suppose there i¥a= {v} with n—1
viewpoints that coveX”. Then, there must exist at least one
[vi,v;41] partition that does not contain amy. From Line6,
this implies that there is some poimt whose interval lies
completely between two consecutive viewpointd/ih Thus,

V' does not cover all elements X which is a contradiction.
[ ]
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