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Abstract

The art gallery problem is a classical sensor placement problem that asks for
the minimum number of guards required to see every point in an environment.
The standard formulation does not take into account self-occlusions caused by
a person or an object within the environment. Obtaining good views of an
object from all orientations despite self-occlusions is an important requirement
for surveillance and visual inspection applications. We study the art gallery
problem under a constraint, termed △-guarding, that ensures that all sides of
any convex object are always visible in spite of self-occlusion.

Our contributions in this paper are three-fold: We first prove that Ω(
√
n)

guards are always necessary for△-guarding the interior of a simple polygon hav-
ing n vertices. Second, we present a O(log copt) factor approximation algorithm
for △-guarding polygons with or without holes, when the guards are restricted
to vertices of the polygon. Here, copt is the optimal number of guards. Third,
we study the problem of △-guarding a set of line segments connecting points
on the boundary of the polygon. This is motivated by applications where an
object or person of interest can only move along certain paths in the polygon.
We present a constant factor approximation algorithm for this problem – one
of the few such results for art gallery problems.

Keywords: Art Gallery Problem, Visibility, Polygon Guarding

1. Introduction

Consider the basic task of placing cameras in an environment in order to
ensure that every point in the environment is seen from at least one camera.

✩A preliminary version of this paper was first presented at ICRA 2014 [1] without the log
factor approximation algorithm presented in Section 3.
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By carefully choosing their locations, the total number of cameras required can
be minimized. This is known as the art gallery problem, and has been an area5

of active research for over three decades [2]. The original formulation asked for
the fewest number of omnidirectional cameras, also called as guards, sufficient
to see every point in an n-sided 2D polygon with no holes. Chvátal [3] answered
this question in 1975 by showing that ⌊n/3⌋ guards are always sufficient and
sometimes necessary. Since then, a number of bounds have been established for10

various classes of polygons. See books by O’Rourke [2] and Urrutia [4] and a
recent survey by Ghosh [5] for some of the important results.

Research on the art gallery problem can be grouped in two classes: (i)
bounds on the minimum number necessary and sufficient of guards for a class of
polygons, and (ii) algorithms to place the minimum number of guards (or some15

bounded deviation from the minimum number) for a given input polygon.
For polygons without holes, Chvátal [3] was the first to prove that ⌊n/3⌋

guards are sometimes necessary and always sufficient. For polygons with holes,
Bjorling-Sachs and Souvaine [6] and Hoffmann et al. [7] proved that ⌊(n+h)/3⌋
are always sufficient, where h is the number of holes and n be the sum of the20

number of vertices on the outer boundary and all hole boundaries.
O’Rourke and Supowit [8] proved that the problem of determining the mini-

mum number of guards required to cover a given polygon is NP-hard. Efrat and
Har-Peled [9] presented a polynomial time algorithm to guard a polygon using
at most O(copt log copt) guards, where copt is the optimal number of guards.25

Nilsson [10] presented a constant factor approximation algorithm to guard the
interior of any monotone polygon. Recently, Bhattacharya et al. [11] presented a
6–approximation algorithm for vertex guarding weak visibility1 polygons with-
out holes. They further improve the approximation ratio to 3 for orthogonal
polygons without holes that are also weak visibility polygons. No constant factor30

approximation algorithm for guarding general polygons is known.

Figure 1: The standard polygon guarding problem ensures that every point in the environment
is seen from at least one guard (left). However, due to self-occlusions, some part of a person
may not be visible (middle). We study the polygon guarding problem in the presence of
self-occlusions (right).

In this paper, we study the art gallery problem by imposing a constraint that

1A polygon P is said to be a weak visibility polygon if there exists an edge e of P such
that every point in P is visible from some point on e.
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is motivated by applications such as surveillance, visual inspection and video-
conferencing where simply seeing an object is not sufficient but also getting a
good view is important. For example, consider a video conferencing system35

where a person can move within a conference room. If the room is convex, then
a single camera is sufficient to guarantee visibility (Figure 1). However, if the
person stands with his or her back to the only camera, no good view of the
person will be available. Our goal will be to place cameras such that any person
or object will be seen from all orientations, in spite of self-occlusions.40

We use this as motivation to study the problem of placing the minimum
number of cameras in order to see all faces of any convex object moving in the
environment. Smith and Evans [12] introduced this problem, and formalized it
as the following △-guarding condition:

Definition 1. A point p is said to be △-guarded by a set of guards G, if p is45

visible from a non-empty set of guards G′ ⊆ G and p lies in the convex hull of
G′. A simple polygon P is said to be △-guarded by a set of guards G, if every
point p ∈ P is △-guarded by G.

Based on this definition, if a polygon is △-guarded then the perimeter of any
convex object located anywhere in the polygon will always be visible from the set50

of guards. Thus, the △-guarding constraint models our requirement of getting
a good view of an object despite possible self-occlusion. Note that the guards
themselves need not be visible from each other.

Smith and Evans [12] proved that deciding if k vertex guards can △-guard a
simple polygon is NP-hard. Efrat et al. [13] presented a randomized algorithm55

based on [14] that when applied to the△-guarding problem yields a O(log copt)–
approximation for polygons without holes. Since the △-guarding constraint
generalizes the simple visibility requirement for the art gallery problem, we
expect to place more guards. The first problem we study allows us to answer
how many more guards are necessary for △-guarding.60

Problem 1. How many guards are necessary to △-guard every point in any
n-sided 2D simple polygon?

We show that Ω(
√
n) guards are always necessary to △-guard any simple

polygon. Contrast this with the standard formulation without △-guarding,
where there are polygons, namely, star-shaped polygons, where a single guard65

is necessary and sufficient.
The Ω(

√
n) lower bound applies to any n–sided polygon. The optimal num-

ber of guards for a specific input polygon may be higher. Next, we study the
algorithmic problem of placing guards in order to △-guard a given input poly-
gon. We consider the case when guards can only be placed on the vertices of70

the polygon, termed vertex guards.

Problem 2. Given a simple polygon P , find the minimum number of vertex
guards, and their placement, sufficient to △-guard every point in the interior of
P .
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We present a O(log copt) approximation algorithm for this problem. Our main75

insight is to show how to convert the problem of △-guarding every point in the
interior of P to △-guarding only a finite number of points which can be solved
using a greedy set cover algorithm.

In many applications such as surveillance or mobile video conferencing, we
may not need to △-guard the entire polygon. Instead, △-guarding may be80

required only for a set of paths a person or object of interest is likely to take
within the environment. With this as motivation, we study the problem of
placing the fewest number of guards to △-guard a set of line segments between
visible points on the boundary of a polygon. Such line segments are termed as
chords. For example, these points can correspond to entry and exit points in the85

environment, the line segments being paths likely to be taken by a person. Our
goal is to △-guard at least one point on each line segment, thus guaranteeing
that independent of the orientation, all sides of the person will be seen at some
point along the path.

Problem 3. Let C be a set of chords in a simply-connected polygon P . Find90

the minimum number of guards, and their placement, in order to △-guard at
least one point on each chord in C.

In this problem, the guards may be placed anywhere within P and not neces-
sarily on the vertices of P . We present a constant factor approximation for this
problem.95

The rest of the paper is organized as follows: We prove the lower bound
on the number of guards for △-guarding in Section 2. The log approximation
for Problem 2 is given in Section 3. The constant factor approximation for
Problem 3 is presented in Section 4. We conclude with a discussion of future
work in Section 5.100

2. Lower Bound on the Number of Guards for △-guarding a Simple
Polygon

In this section, we prove a lower bound on the number of guards necessary
to △-guard any simple polygon P . For establishing the lower bound, we will
prove necessary conditions on where the guards must be placed. We first define105

an edge extension as follows. Extend an edge of P from either endpoint until
it touches the exterior of the polygon. Each of the (closed) line segments lying
on either side of the edge is termed as an edge extension. An edge introduces
as many edge extensions as the number of its reflex endpoints. As a matter of
convention, we will refer to a vertex on a hole as a convex vertex if the angle110

formed by the two adjacent sides containing the interior of the polygon is smaller
than π

2
. Else, we refer to the vertex as a reflex vertex.

Lemma 1. Let G be a set of guards that △-guards a simple polygon P . If v is
a convex vertex in P (lying on the exterior or hole boundary), then v ∈ G. If e
is any edge extension in P , then there exists a guard in G that lies on e.115
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The proof is presented in the appendix. Using Lemma 1, we can prove the
lower bound on the number of guards of any △-guarding set of P .

Theorem 1 (Lower Bound). Let G be a set of guards placed in an n-sided
simple polygon P . If G △-guards P , then |G| = Ω(

√
n).

Proof. Let the total number of convex and reflex vertices in P be nc and nr,120

respectively. We have two cases, nc ≥ n/4 or nc < n/4. First consider, nc ≥
n/4. From Lemma 1 we know |G| ≥ nc. Hence, |G| ≥ n/4 and consequently
|G| = Ω(

√
n).

Now consider, nc < n/4. That is, nr ≥ 3n/4. Each edge in P may introduce
up to two unique edge extensions. Consider the set of edge extensions due to125

edges whose endpoints are both reflex vertices. Let m be the total number of
such edge extensions. We know, m ≥ 2(nr − nc) ≥ n.

From Lemma 1, we know each of these m extensions must have a guard
placed on them. The optimal algorithm may be able to use the same guard if
two or more extensions intersect at a point. Let k be the maximum number of130

extensions that intersect in one point. To cover m extensions, any algorithm
will require at least m/k guards. Hence, |G| ≥ m/k.

Now consider the polygon edges that contributed to the k extensions which
intersect at a point. Since we are focusing only on edges with reflex vertices on
both ends, each such edge must have introduced another extension, contributing135

another k extensions. Since the two extensions resulting from a polygon edge
are colinear, any guarding set will be forced to use a separate guard for covering
each of the other k extensions. Hence, |G| ≥ k.

Multiplying the two lower bounds, we get |G|2 ≥ m or |G| ≥ √m. Since
m ≥ n, the theorem statement follows.140

Theorem 1 states that Ω(
√
n) guards are necessary for △-guarding polygons

with or without holes. Figure 2 shows an instance where O(√n) guards are
sufficient for △-guarding a polygon with holes. It is not known if there are
polygons without holes for which O(√n) guards are sufficient.

Figure 2: Polygon P consists of k × k holes aligned along a grid. The outer boundary of the
polygon forms a square. P has n = 4k2 + 4 vertices. Only, 8k + 4 = O(

√
n) guards (marked

by small squares) are sufficient for △-guarding P .

5



3. O(log copt)–approximation with Vertex Guards145

In this section, we present a deterministic algorithm that yields aO(log copt)–
approximation for△-guarding polygons with and without holes when the guards
are restricted to be placed only on the vertices of P (Problem 2). This improves
upon the randomized algorithm presented by Efrat et al. [13] which would yield
a O(log copt log(copt log copt))–approximation for polygons with holes. Our main150

result in this section is as follows.

Theorem 2 (Vertex Guards). There exists a deterministic algorithm which
finds a set of vertex guards G that △-guards any simple polygon P such that
|G| = O(copt log copt), where copt is the minimum number of vertex guards re-
quired to △-guard P .155

Before we describe our algorithm, we will present a more convenient defini-
tion (equivalent to Definition 1) for △-guarding a point.

Proposition 1. Let p be any point in a polygon, l be any line passing through
p, and H be any of the two closed half-planes defined by l. p is △-guarded if
and only if H contains a guard visible from p.160

We represent a half-plane by drawing a vector which starts at p and is perpen-
dicular to the line l (Figure 3). Let θ be the orientation of this vector with
respect to some globally defined axis. By Proposition 1, in order to △-guard p,
we must ensure half-planes corresponding to every orientation θ ∈ [0, 2π) must
contain a guard.165

Figure 3: H is a closed half-plane defined by some line l passing through p. According to
Proposition 1, p is △-guarded only if half-planes of all possible orientations through p contain
a guard. A guard vi that sees p is contained in only those half-planes whose normal vectors
are between −π/2 and π/2 of the segment pvi.

If a guard vi sees p, then vi will be contained in all half-planes whose vectors
are between −π/2 and π/2 of the segment pvi. Hence, the point p is △-guarded
by a set of guards if and only if for any θ, the pair (p, θ) is covered by the set
of guards. △-guarding the interior of P thus is equivalent to covering (p, θ) for
all points p ∈ P and all orientations θ at p. Unfortunately, there are infinitely170
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many such (p, θ) pairs in P . Nevertheless, we will show that there exists only
finitely many points and finitely many orientations at each point that need to
be considered in order to △-guard a polygon. Using this, we construct a set
system (X,R) with |X| = O(n6). We can then apply a simple greedy set cover
algorithm which gives a O(log |X|) approximation. Together with our lower-175

bound given in Theorem 1, Theorem 2 follows. We start by describing what
these finitely many points are.

Create a visibility arrangement of the set of vertices in P as follows: If two
vertices are visible from each other, draw a line segment joining them, extending
out on both sides till you reach the boundary of P . The set of all such line180

segments yields the visibility arrangement A. The arrangement A partitions
the interior of P into a set of cells, each of which is convex [5]. The vertices
of each cell are the points of intersection of two or more segments. There are
O(n2) line segments and O(n4) cells.

All points in the same cell are visible from the same set of vertices (see e.g.,185

Lemma 2.1 in [5]). The following lemma shows that we can convert the problem
of △-guarding the entire interior of P into the problem of △-guarding only the
set of vertices in the visibility arrangement.

Lemma 2. Let Ai be any cell in the visibility arrangement of all vertices of a
simple polygon. Let pi be any point inside Ai and V (i) be the vertices of the190

polygon visible from p. If all vertices of Aj are △-guarded by V (i), then pi is
△-guarded by V .

Proof. Suppose not. Then, along with Proposition 1 this implies there exists
a line passing through pi, say l and a corresponding half-plane, say H, which
does not contain any guard visible from pi. Let ai be a vertex of cell Ai that195

lies in H (ai exists since the cell Ai is convex). We draw a line parallel to l
passing through ai which forms a half-plane, say H ′. We know ai is △-guarded
by vertices V (i). Hence, by Proposition 1 H ′ contains a vertex, say vi ∈ V (i)
of P visible from ai. vi is also visible from pi. Hence, vi lies in H and visible
from pi which is a contradiction.200

We can thus restrict the problem of △-guarding the interior to the problem
of △-guarding only the finite set of vertices in the visibility arrangement. We
will now show that there are only finitely many orientations that we need to
consider at each such vertex.

Consider a vertex ai of some cell Ai. Let V (i) be the set of polygon vertices205

visible from any point in Ai. For every vi ∈ V (i) draw a line perpendicular
to the segment viai and passing through ai (Figure 4). These set of lines cre-
ate O(|V (i)|) angular sectors about ai. If θ1 and θ2 are any two orientations
lying within the same sector, then any polygon vertex that covers (ai, θ1) also
covers (ai, θ2) and vice versa. Thus, we only need to consider only O(|V (i)|)210

orientations per vertex ai.
We now create a finite set system (X,R) as follows: For every cell vertex

ai create O(|V (i)|) elements in X, one corresponding to each angular sector θi.
R is a collection of n subsets of X, each corresponding to a polygon vertex vi.
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Figure 4: A vertex vi is said to cover any orientation at point ai if it is at most π/2 away
from the line viai. All such orientations covered by vi are marked shaded.

The subset corresponding to vi contains all pairs (ai, θi) that are covered by vi.215

There are O(n4) cells with O(n) vertices per cell and O(|V (i)|) = O(n) sectors
per vertex. Thus |X| is at most O(n6). A greedy set cover algorithm yields a
log |X| = O(log n) = O(log copt) approximation. This proves Theorem 2.

Nevertheless, copt itself is subject to the Ω(
√
n) lower bound. The large

lower bound results from having to guard each convex vertex and edge extension,220

which may not be important for many applications. Instead, we will restrict our
attention to △-guarding only regions of interest within the polygon, specifically,
line segments joining points on the boundary of a simply-connected polygon.

4. △-guarding Chords

In this section, we present a constant factor approximation for △-guarding225

a set of chords in a polygon. A chord in a simple polygon P is any line segment
which joins two mutually visible points that lie on the boundary of P . A diagonal
is special type of chord where both points are vertices of P .

Definition 2. A chord is said to be △-guarded by a set of guards G, if there
exists at least one point on the chord △-guarded by G.230

The chord △-guarding problem is defined as: Given a set of chords C in
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a simply-connected polygon, find the minimum set of guards to △-guard every
chord in C.

The above definition uses the notion of △-guarding at least one point per
chord. For the problem of △-guarding every point on the chord, one can con-235

struct an instance where the set of input chords fill the entire polygon. Thus,
the problem becomes at least as hard as △-guarding the entire polygon. Hence,
we need Ω(

√
n) guards in the worst-case. The algorithm from the previous sec-

tion can be applied to obtain a log factor approximation for △-guarding every
point on a set of chords. We focus on △-guarding at least one point per chord,240

and present a constant factor approximation algorithm.
Our main result for this problem is as follows.

Theorem 3 (Chord Guarding). Given a set of chords C in a simply-connected
polygon P , there exists an algorithm which finds a set of guards G △-guarding
C, such that |G| ≤ 12copt where copt is the minimum number of guards required245

to △-guard C.

4.1. Terminology and notation

We label the points on the boundary of P in the clockwise order, starting
from an arbitrarily chosen vertex. If a point p on the boundary appears before
point q in the clockwise ordering, then we denote this by p ≺ q. For each chord250

Ci, we term the endpoint that appears first in the clockwise ordering along the
boundary as its start point (si) and the other endpoint as the terminal point
(ti). Thus, si ≺ ti.

We map all si and ti to a circle maintaining their clockwise ordering (Fig-
ure 5). The part of the boundary of P from si to ti along the clockwise order255

maps to an arc on the circle; we term this as the induced arc (Ai). The chord
also divides the polygon into two subpolygons. We term the subpolygon cor-
responding to the induced arc as the induced subpolygon, denoted by Pi. Pi is
made up of the boundary of P between si and ti and the edge tisi.

The set of all arcs induced by C creates a circular-arc graph [15], with arcs260

as vertices, and an edge between two vertices if the corresponding arcs overlap.
The maximum independent set (MIS) of this graph is the largest set of disjoint
arcs. Masuda and Nakajima [15] presented an optimal algorithm for finding the
MIS of circular-arc graphs.

We use the following distinction for non-disjoint arcs: Ai and Aj with Ai ∩265

Aj 6= ∅ are termed cutting arcs, if Ai 6⊆ Aj and Aj 6⊆ Ai. Ai and Aj are said to
cut each other.

We will refer to a chord, its induced arc, and the corresponding vertex in the
circular-arc graph, interchangeably. Next, we present a high level discussion of
our strategy for placing guards.270

4.2. Strategy for guard placement

Given the MIS of the circular-arc graph, we classify each chord in C into
four types. A chord Ci is of
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Figure 5: The endpoints of all chords map to a circle in clockwise order. The corresponding
arc is termed as the induced arc Ai. Pi is the subpolygon induced by Ci.

• Type I if Ai is in the MIS,

• Type II if Ai cuts some arc in the MIS,275

• Type III if Ai contains some arc in the MIS,

• Type IV if Ai is contained in some arc in the MIS.

First in Section 4.3, we describe the placement of a guard set △-guarding
chords of Types I & II. In Section 4.4, we will △-guard a subset of Type III
guards. Finally, in Section 4.5 we describe an algorithm for △-guarding the280

remaining set of guards of Type III and Type IV chords.
We will show that the total number of guards placed by our algorithm is at

most a constant times that of an optimal algorithm. We will use the following
two useful properties specific to the △-guarding chords that will allow us to
obtain a constant factor approximation.285

Lemma 3. Two chords Ci and Cj intersect if and only if their corresponding
arcs Ai and Aj cut each other.

The proof, which verifies the ordering of si, sj , ti, tj for both directions, is pre-
sented in the appendix.

Lemma 4. If chord Ci is △-guarded by a set of guards G, then at least one290

guard in G must lie in its induced subpolygon Pi.

Proof. Let p be a point on Ci that is △-guarded by G. Consider the line con-
taining chord Ci which passes through p. This line creates two closed half-planes
one of which contains all points from Pi visible from p. From Proposition 1,
we know this closed half-plane must contain a guard visible from p. Since no295

point in this half-plane outside of Pi lies within the polygon, this guard must
be contained in Pi.
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We term such a guard as the cardinal guard of Ci. We will charge a constant
number of guards in our placement to a cardinal guard in the optimal placement.
We first establish a lower bound on the minimum number of guards necessary300

to △-guard C using the MIS of the circular arc graph.

4.3. Guarding Type I and II chords

Lemma 5. If M is the MIS of disjoint arcs in the circular-arc graph, then
|M | ≤ copt, where copt is minimum number of guards for △-guarding C.

Proof. Since all arcs in the MIS are disjoint, their induced subpolygons are305

disjoint. That is, for any two arcs Ai, Aj ∈ M we have Pi ∩ Pj = ∅. From
Lemma 4, we know each chord must have at least one guard in its induced
subpolygons. Since the subpolygons for all chords in the MIS are disjoint, no
two chords may share a cardinal guard. Hence, there are at least as many
cardinal guards as the number of disjoint subpolygons. Therefore, |M | ≥ copt.310

We now describe set S1 guarding chords of Types I & II.

Lemma 6. If S1 is the set of endpoints of chords in M , then S1 △-guards all
chords of Types I & II, and |S1| ≤ 2copt.

Proof. First consider Type I chords. Since we place a guard at both endpoints
of each such chord, all points lying on a Type I chord are △-guarded. Let Ci315

by a Type II chord whose arc cuts an arc of Cj , a Type I chord. According
to Lemma 3, Ci and Cj must intersect in a point. Since all points on Cj are
△-guarded, Ci is △-guarded. Hence, all Type II chords are △-guarded.

4.4. Guarding a subset of Type III chords

Consider chords of Type III. We call the portion of the circle between two320

consecutive arcs in the MIS gaps. Type III chords have both endpoints in a
gap, and the start and terminal endpoints must lie in different gaps. Each gap
may contain multiple start and terminal points. Since there are as many gaps
as arcs in the MIS, from Lemma 5, we may place a constant number of guards
per gap and perform comparable to an optimal algorithm.325

A2

A3

A4

A5

A1

Figure 6: Type III chords. The arcs in MIS are shown dotted, gaps are marked shaded. In
each gap, we place guards (marked square) on the endpoints of chords with earliest start point
or latest terminal point. Chords with arcs A1, . . . , A4 may not be △-guarded by this set of
guards, where as A5 is.

We will place at most four guards per gap in a guard set S2 as follows
(Figure 6):
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• on the two endpoints of the Type III chord with the first start point within
each gap (if any), and

• on the two endpoints of the Type III chord with the last terminal point330

within each gap (if any).

Lemma 7. If Ci and Cj are any two Type III chords not △-guarded by S2,
then either Ai and Aj are non-cutting arcs or both chords start from the same
gap and end in the same gap. |S2| ≤ 4copt, where copt is the optimal number of
guards for △-guarding C.335

Proof. There are as many gaps as the number of arcs in the MIS. We place at
most four guards per gap. Using Lemma 5, |S2| ≤ 4copt.

We will prove the contrapositive of the statement of the lemma. If Ai and
Aj are cutting arcs with either their start or terminal points in different gaps,
then Ci and Cj are △-guarded by S2. We will prove the case when their start340

points lie in different gaps. The case for the terminal points of Ci and Cj lying
in different gaps is symmetric.

Without loss of generality, let si ≺ sj . For contradiction, assume that Ci

and Cj are not △-guarded by S2.
Consider the gap containing sj . We know this gap contains at least one345

start point of a Type III chord, i.e., sj . If sj is the earliest start point in this
gap, then S2 contains two guards placed on either endpoints of Cj and hence,
Cj must be △-guarded, which is a contradiction. Thus, there exists some other
start point in the same gap before sj , say sk corresponding to a Type III chord
Ck.350

sk tksj

si

tj

sk tksj

si

tj

Figure 7: Illustration of the proof for Lemma 7. Ci and Cj start in different gaps. At least
one of Ci or Cj cuts a chord with guards placed on two endpoints, Ck.

For the terminal point of Ck, we have two possibilities (See Figure 7)

1. tk ≺ tj . We know sk ≺ sj . tk and tj do not lie in the same gap as sk
and sj respectively. Thus we get, sk ≺ sj ≺ tk ≺ tj . Therefore, Ak cuts
Aj . From Lemma 3, Ck must intersect with Cj . Since we have guards
placed on both endpoints of Ck, all points on Ck are △-guarded including355

Cj ’s point of intersection with Ck. Hence, Cj is △-guarded, which is a
contradiction.
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2. tj ≺ tk. Since Ci and Cj are cutting arcs and si ≺ sj , we get ti ≺ tj .
Therefore ti ≺ tk. Since si lies in a gap before the one that contains sj
and sk, we get si ≺ sk ≺ ti ≺ tk. Hence, the arcs of Ci and Ck cut each360

other. Following the similar argument, Ci must be △-guarded, which is a
contradiction.

Lemmas 6 and 7 present guard placement of size at most 6copt covering all
Type I, II and a subset of III chords in C. We describe the placement of another
guard set to △-guard all remaining chords in C.365

4.5. Guarding remaining Type III and IV chords

Let C ′ ⊂ C be the set of chords not △-guarded by guard sets S1 and S2

described in Section 4.3. C ′ consists of a subset of Type III chords given by
Lemma 7, and all Type IV guards. Lemma 7 states that if Ci, Cj ∈ C ′ cut each
other, then they must start and terminate in the same gap. We will define an370

equivalence class of all Type III chords that start and terminate in the same
gap. Similarly, we will define another equivalence class of Type IV chords that
are contained in the same arc in the MIS. We term each such class as a group.
Thus two chords in C ′ lie in the same group if they start and terminate in the
same gap, or if they are contained within the same arc in the MIS.375

While the chords within each group may cut each other, we show that chords
in distinct groups do not.

Lemma 8. If Cm ∈ Gi and Cn ∈ Gj are two chords in distinct groups, then
Am and An do not cut each other.

The full proof, presented in the appendix, verifies all the cases and shows that380

the arcs cannot cut each other. Hence, two groups are either disjoint or one
completely contains the other. This gives a partial ordering on all groups based
on inclusion. We use this to create a tree of chords T :

1. Re-index all chords in T , such that for any Ci and Cj if si ≺ sj then i < j.
That is, if a chord starts before another, then it has a lower index than385

the other.
2. The circumference of the circle forms the root.
3. Create a tree of groups. Iteratively add all groups as nodes in the tree

using the rule: group Gj is an ancestor of Gi if and only if the induced
arc of Gi is completely contained in Gj .390

4. Replace each group node Gi with a chain of chord nodes, one node per
chord in the group. The chord with a lower index is at a lower depth in
this chain. The subtree rooted at Gi is attached to the chord node with
the highest index, and the parent of Gi is attached to the chord node with
the lowest index.395

In the following lemmas, we will prove useful properties of T which will form
the basis of our guard placement algorithm. Denote the shortest path from any
node Ck towards the root by Π(Ck). We show the start points of chords lying
on the same path follow in order of the path. Furthermore, no chord which is
an ancestor of Ck in Π(Ck) terminates before Ck starts.400
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Lemma 9. If Cm is the ancestor of Cn then sm � sn and sn � tm.

Proof. First let Cm and Cn belong to the same group. By construction, sm � sn.
Furthermore, if both are Type III chords, then sm and sn must lie in the same
gap which comes before the gap containing tm and tn. Therefore, sn ≺ tm.
Similarly, if both are Type IV chords, then if tm ≺ sn then Am and An are405

disjoint leading to a contradiction about them being contained in the same arc
in the MIS. Hence, if Cm and Cn belong to the same group then the lemma
follows.

Next, let Cm and Cn belong to different groups. Since Cm is an ancestor
of Cn, we know that the group containing Cm completely contains the group410

containing Cn (Steps (3) and (4) of the construction of T ). Therefore, Am

completely contains An implying sm ≺ sn ≺ tn ≺ tm.

We will place guards to △-guard chords in the ordered tree T . By construc-
tion, all leaf nodes in T have disjoint induced subpolygons. Furthermore, only
guards along the same path to the root may share a cardinal guard. Hence, any415

guard set must contain at least as many cardinal guards as the number of paths
from leaf nodes to the root. However, this lower bound is not sufficient to obtain
a constant factor approximation directly. There are instances where the number
of guards necessary to △-guard a path can vary from as few as two to as many
as the number of chords along the path. In addition, two or more paths may420

merge and thus be able to share guards. Nevertheless, we show that the greedy
approach in Algorithm 1 correctly △-guards all chords in T using at most a
constant times the number of guards in an optimal guard set (Lemma 12).

The algorithm uses the ordering property presented in Lemma 9. Initially
all chords are marked as not being △-guarded. At the start of each iteration425

(Step 4), we pick a chord Ck with the highest depth not yet marked △-guarded.
All descendants of Ck have been △-guarded in previous iterations. We will
place a cardinal guard x ∈ Pk for Ck. We will choose its location to be such
that it sees a point on the chord with the lowest depth which lies on Ck’s path
to the root. All intermediate chords are marked △-guarded using at most six430

guards as given in Step 6. The following lemma proves the correctness of this
intermediate step.

Lemma 10. If a point x ∈ Pk sees a point y ∈ Ci such that Ci is the ancestor
of Ck, then {x, y, sk, tk, si, ti} △-guard all chords on the path from Ck to Ci.

Proof. First observe that Ci and Ck are△-guarded by guards on their endpoints.435

Let Cj be any chord on the path from Ck to Ci. If either endpoint of Cj is shared
with that of Ci or Ck, then Cj is △-guarded.

Otherwise, we have Cj lying on the path from Ck to Ci, i < l < k. By the
ordering property (Lemma 9), si ≺ sj ≺ sk. We have two cases:

(1) ti � tk. From Lemma 9, we get the ordering si ≺ sj ≺ sk � ti � tk. Also440

from Lemma 9, Cj cannot terminate before sk since Ck is a descendant of Cj .
Therefore, Cj must intersect at least one of Ci and Ck and thus be △-guarded
by the guards placed on the endpoints of Ci and Ck.
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Algorithm 1: TreeGuarding

Input: T Ordered tree of chords in C ′

Output: S3 guard set △-guarding C ′

1 S3 ← ∅
2 mark all chords in T as not △-guarded
3 while ∃ a chord in T is not marked △-guarded do
4 k ← largest index such that Ck is not △-guarded
5 i← smallest index such that some point y ∈ Ci ∈ Π(Ck) is visible

from a point x ∈ Pk

6 S3 ← S3 ∪ {x, y, sk, tk, si, ti}
7 mark all Cj ∈ Π(Ck) with i ≤ j ≤ k as △-guarded

8 end
9 return guarding set S3

(2) tk ≺ ti. We have three cases: (a) tk ≺ tj ≺ ti, (b) tj ≺ tk, or (c) ti ≺ tj .
Recall that si ≺ sj ≺ sk. Hence for (b) and (c), Cj intersects with either Ck or445

Ci, respectively. Hence, Cj will be △-guarded by the guards on the endpoints
of Ck and Ci.

Consider case (a) (Figure 8). We have Pk ⊂ Pj ⊂ Pi. x ∈ Pk sees a point
y ∈ Ci. Extend the segment from y to x till it hits the boundary of Pk at point
z. Segment zy is a chord in Pi. Since z ∈ Pj , let y

′ be the point of intersection450

of segment zy (other than z) with the boundary of Pj . y
′ may either lie on the

edge Cj of Pj or on the part of the boundary of P from sj to tj . However, the
latter is also a part of the boundary of Pi – in fact, the part of the boundary
of Pi which does not contain the edge Ci. This leads to the contradiction that
a chord zy intersects the boundary of Pi at three distinct points, z, y and y′.455

Hence, y′ must lie on Cj which implies y′ is visible from the guards at x and z.
Thus, Cj is △-guarded.

The correctness of the algorithm follows from the correctness of the intermediate
step.

Corollary 1. All chords in T are △-guarded by Algorithm 1.460

We show that the size of S3 is only a constant times that of any optimal
guarding set. Consider an optimal guard set Gopt covering C ′. For each guard
in Gopt, we create a new set of all chords for which the guard acts as a cardinal
guard. That is, for any g ∈ Gopt we create the set {Ci|Ci ∈ C ′, g ∈ Pi}. Denote
this collection of sets by Copt.465

We create another collection of sets, denoted C, for Algorithm 1. For each
iteration of the algorithm, we create a new set that contains all chords marked
△-guarded in Step 7. That is, create the set Ck = {Cj |i ≤ j ≤ k} and add it to
C. The largest index of chords contained in this set corresponds to the largest
unmarked index (i.e. k) found in Step 4.470
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Figure 8: One iteration of Algorithm 1 (Steps 4–7). The guards are placed at locations marked
by a square. Any chord with a starting vertex lying in between si and sk is △-guarded.

Lemma 11. If k and k′ are the largest indices in distinct sets Ck and Ck′ in C
respectively, then k 6= k′ and no set in Copt contains both Ck and Ck′ .

Proof. Consider any iteration of Algorithm 1 and the corresponding set in C. If
k was the largest unmarked index in Step 4, then it is not included in the sets
in C from previous iterations. Furthermore, all descendants of k are marked475

△-guarded. All chords in the current iteration marked △-guarded have index
smaller than k. Hence, if k and k′ are the largest indices in two distinct sets of
C then k 6= k′.

Now we show that Ck and Ck′ cannot appear in the same set in Copt. Suppose
they do. We have two possibilities: Ck and Ck′ lie on the same or different paths480

to the root. If Ck and Ck′ lie on different paths to the root, then their induced
subpolygons Pk and Pk′ are disjoint. Hence, their cardinal guards cannot be
the same, implying Ck′ and Ck′ cannot be in the same set in Copt.

Then Ck′ and Ck′ must lie on the same path. Assume without loss of gener-
ality, k < k′. Since k and k′ lie in the same set in Copt, they must share the same485

cardinal guard, say g ∈ Pk′ . Furthermore, g also sees a point on Ck. Therefore,
Ck will be marked △-guarded and included in Ck′ according to Step 7. However,
Ck cannot be included in some other set Ck′ ∈ C, which gives a contradiction.

Lemma 12. If S3 is the guarding set obtained in Algorithm 1, and copt is the
optimal number of guards for △-guarding C ′, then |S3| ≤ 6copt.490

Proof. Since we place at most six guards per iteration, |S3| ≤ 6|C|. We know
|Copt| = copt. If we show |C| ≤ |Copt|, we are done. Suppose |C| > |Copt|. Using
Lemma 11 this implies there is some chord Ci not contained in any set in Copt
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such that i is the largest index of some set in C. This implies no guard in the
optimal guard set acts as the cardinal guard for Ci. From Lemma 4 this implies495

Ci is not △-guarded, which is a contradiction. Thus, |C| ≤ |Copt|, which proves
the statement of the lemma.

From Lemmas 6, 7, and 12, the guard sets S1, S2 and S3 △-guard all input
chords using at most 12 times as many guards as an optimal algorithm thus
proving Theorem 3.500

5. Conclusion

In this paper, we studied the problem of guarding a polygon under the △-
guarding constraint [12]. The △-guarding constraint is motivated by practical
surveillance scenarios where the goal is to see all sides of a person despite self-
occlusion. We showed that Ω(

√
n) guards are always necessary to △-guard505

any simple n–sided polygon. We also presented a O(log copt) approximation
algorithm for △-guarding the interior using vertex guards. Since the required
number of guards to cover the complete interior is large, we turned our attention
to a scenario in which we are given entry and exit points to the environment
connected by straight-line paths, i.e., chords. The goal is to △-guard at least510

one point on each chord. We presented an approximation algorithm for simply-
connected polygons which uses at most 12 times the optimal number of guards.
In addition to solving a practical problem, our result is of theoretical interest
because this is one of the few instances where a constant factor approximation
algorithm for an art gallery problem is known. Future work includes extending515

the result to richer types of regions of interest such as arbitrary paths and
general subpolygons in the environment.
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Appendix A. Proof of Lemma 1560

Proof. Convex Vertices.
Suppose not. There exists a convex vertex vi with no guard placed on it. With-
out loss of generality, say vi lies at the origin of a coordinate system, with the
perpendicular bisector of the interior angle as the Y -axis.

Consider the triangle spanned by vi−1, vi, and vi+1 (see Figure A.9). With-565

out loss of generality, say vi−1 has a lower Y -coordinate than vi+1. Draw a line
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Figure A.9: There exists a guard on every convex vertex of the polygon.

through vi−1 parallel to the X-axis. Let a be the point of intersection with
the edge vivi+1. We have two cases: (a) There exists a guard in the interior
of triangle vi−1via, or (b) There does not exist a guard in the interior of the
triangle vi−1via.570

For (a), let g be some guard with the smallest Y-coordinate (say y) lying in
the triangle. We have y > 0, since v lies at the origin. Consider a point, say y′

on the Y-axis midway between y and v. Draw a line through y′ parallel to the
X-axis, and consider the lower half-plane. If there exists a guard visible from y′

lying in the lower half-plane, then that contradicts the assumption that g is the575

guard with the lowest Y-coordinate in the triangle. Hence, there does not exist
any guard in the lower half-plane through y′. Thus, y′ is not △-guarded from
Proposition 1, which sets up our contradiction.

For (b), we repeat the same argument as the case (a) above using any arbi-
trary point y′ with Y -coordinate less than that of vi−1.580

Edge Extensions.
We will prove by contradiction. Consider the case when the edge has two re-
flex vertices on its endpoints, say vi and vi−1. Let the edge be aligned with
the X-axis such that its midpoint is the origin. From all guards, draw a line
passing through all vertices of the polygon creating a visibility arrangement585

(Figure A.10).
Consider any cell, A, in the visibility arrangement sharing an edge with

vivi−1. Let p be any point in the interior of this cell. p is not visible from any
guard with negative Y -coordinate (the visibility of any such guard is blocked by
either vi or vi−1). Let y and y′ be the smallest Y -coordinates of guards visible590

from p and with X coordinate smaller and greater than p, respectively. We
denote the corresponding guards by g and g′ respectively.

If both y and y′ are greater than 0, then draw a line parallel to the X-
axis with Y -coordinate equal to 0.5min{y, y′}. Let p′ be a point on this line
contained in cell A. Then the halfplane containing p′ extending towards the595

negative Y -axis does not contain any guard visible from p′. Hence, p′ is not
△-guarded, which is a contradiction.
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Figure A.10: To △-guard all points lying in the cell (shown shaded) near the edge, there must
exist a guard on each edge extension.

Suppose only one of y and y′ is greater than 0, say y′. Then g must lie
on the X-axis. We have either g lies on an edge extension, or g lies in the
(open) polygon edge. Suppose g is the left-most point on the X-axis lying on600

the polygon edge, but not on the edge extension. Let A be the cell sharing with
vi as one of its vertices. Rotate the X-axis about g clockwise till the first guard
g′′ lying to the right of g is encountered.

Let H be the open halfplane using the line through g and g′′ containing vi. If
there exists a point p′ lying in H ∩A then draw a line through p′ parallel to gg′′605

and consider the closed lower halfplane. This halfplane does not contain any
guard in its interior, and hence p′ is not △-guarded, which is a contradiction.
Hence p′ must not exist, which implies g′′ lies on the X-axis to the left of g.
Since g is the left-most guard on the edge, g′′ must lie on the edge extension.
The argument for the other edge extension is symmetrical.610

Appendix B. Proof of Lemma 3

Proof. Without loss of generality let Ci start first along clockwise ordering on
the boundary, i.e., si ≺ sj . If Ci and Cj intersect, then we have si ≺ sj ≺ ti ≺ tj
(Figure B.11). Hence, Ai cuts Aj .

Consider the other direction. We prove the contrapositive. That is, if Ci615

and Cj do not intersect then Ai and Aj do not cut each other. If Ci and Cj

do not intersect, then we have either si ≺ ti ≺ sj ≺ tj or si ≺ sj ≺ tj ≺ ti
(Figure B.11). These imply either Ai and Aj are disjoint or Aj ⊂ Ai. In both
cases, Ai and Aj do not cut each other.
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Figure B.11: If Ci and Cj intersect, then the correspondings arcs cut each other. If Ci and
Cj do not intersect, either Aj is completely contained in Ai, or Ai and Aj are disjoint (given
si ≺ sj).

Appendix C. Proof of Lemma 8620

Proof. When both Gi and Gj contain Type IV chords, all arcs in Gi and Gj

are contained in disjoint arcs in MIS. Hence, Am and An do not cut each other.
If only one group contains Type IV chords, say Gi, then all arcs in Gi lie

between two consecutive gaps. On the other hand, arcs inGj start and terminate
in a gap. Hence, all arcs in Gj are either disjoint from arcs in Gi or completely625

contain arcs in Gi.
The third possibility is both Gi and Gj contain Type III chords.
We have three cases:

1. Both starting and terminal gaps for Gi and Gj are distinct. Without loss
of generality, let sm ≺ sn. Hence we have,630

(a) sm ≺ tm ≺ sn ≺ tn: All arcs in Gi and Gj are disjoint.
(b) sm ≺ sn ≺ tn ≺ tm: All arcs in Gj are completely contained in any

arc in Gi.
(c) sm ≺ sn ≺ tm ≺ tn: Am and An cut each other. That is, Cm and

Cn are Type III chords with distinct start or terminal gaps cutting635

each other. From Lemma 7 we have that S2 covers both Cm and Cn.
Hence Cm, Cn 6∈ C ′ which is a contradiction.

2. Only starting gaps for Gi and Gj are distinct. Without loss of generality,
let sm ≺ sn. Hence we have,

(a) sm ≺ tm ≺ sn ≺ tn: We know tm and tn lie in the same gap.640

Therefore, sn and tn lie in the same gap which is a contradiction
since Type III arcs span at least one gap.

(b) sm ≺ sn ≺ tn � tm: An is completely contained in Am.
(c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.

3. Only terminal gaps for Gi and Gj are distinct. Without loss of generality,645

let tm ≺ tn. Hence we have,
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(a) sm ≺ tm ≺ sn ≺ tn: We know sm and sn lie in the same gap.
Therefore, sm and tm lie in the same gap which is a contradiction
since Type III arcs span at least one gap.

(b) sn � sm ≺ tm ≺ tn: Am is completely contained in An.650

(c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.
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