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Abstract— We study the problem of minimizing the time to
accurately localize a target using radio-based telemetry. The
directional nature of the antenna allows us to obtain bearing-
to-target sensor measurements. There are two critical attributes
that seperate our setup from the majority of bearing-only
tracking literature: ambiguity and long measurement time.
We provide a sensing strategy which midigates the effect of
ambiguity, and prove that the time required to localize a target
is less than a constant times any bearing-based localization
strategy.

I. I NTRODUCTION

In active localization, the objective is to plan measurement
locations for a mobile robot so as to accurately localize a
target. In most applications, the true location of the target is
unknown. Instead, the robot must estimate the target’s loca-
tion from its measurements. The primary source of difficulty
in active localization problems is their online nature: With
each measurement, the robot obtains more information about
the target’s location which should be incorporated into the
choice of future measurement locations. The online nature
of the decision making process makes it difficult to provide
theoretical guarantees about the performance of an active
localization algorithm.

The motivating application for our study is localizing
radio-tagged invasive fish in lakes. In this setting, several fish
are caught and surgically implanted with low-power radio
transmitters. The tagged fish are released, and eventually
associate with larger groups. During the winter months,
the majority of a lake’s population tends to aggregate and
remain stationary. By tracking the radio-tagged fish, which
eventually join these aggregations, the population can be
found and targeted for removal [1]. Since manual monitoring
of tagged fish is time-consuming and potentially dangerous
in harsh conditions, we are developing a robotic system to
continuously monitor tagged fish. Our ultimate goal is to
monitor many fish in a lake to detect aggregations.

Our platform, shown in Figure 1, is composed of a mobile
robot and a directional antenna mounted on a servo motor.
By rotating the antenna and finding the direction with the
strongest signal strength, one can compute a line that passes
through the robot and the radio tag. The exact bearing is
unknown due to the symmetric nature of the antenna. For
this reason, we refer to this type of sensor as an infinite-line
sensor. Since the radio tags transmit with a low duty cycle
(less than 1 Hz), it can take up to one minute to construct
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Fig. 1. The mobile robot, loop antenna, and sensing equipment.The picture
was taken during field trials on Lake Gervais, MN.

a bearing measurement. During this time the robot must
remain stationary to avoid changing the range or bearing
to the target. Our objective is to find a series of discrete
measurements which provide a good final estimate of the
target location. We seek to minimize the time taken to
localize the target for two reasons: (i) We would like to
minimize the probability that the target moves during the
measurement process, and (ii) to possibly track multiple
targets. Similar objectives have been studied in the context
of bearings-only localization, but the long measurement time
and ambiguity of this sensing modality set this problem apart
from the majority of the literature on bearings-only tracking.

The infinite-line sensor was considered by [2], in the con-
text of pursuit-evasion games. A finite-time capture strategy
was provided by using pairs of measurements to resolve
the ambiguity. But with sensor noise, this strategy cannot
guarantee capture, because large measurement noise makes
it increasingly difficult to resolve the true bearing (See [3]
for more detail).

This problem has been considered in the wireless sensor
network community, since direction of arrival, and therefore
a bearing measurement, can be estimated from received radio
messages (see [4] for a high-level survey). Ultimately, these
works solve a fundamentally different problem and cannot



provide sensing locations to minimize the resulting error.
Similarly, Derenick et al. [5] considered radio-based bearing
measurements in the context of cooperative localization for
teams of mobile robots. However, the robots were consid-
ered to be arbitrarily moving, and no motion strategy was
provided.

Disregarding ambiguity, the problem of tracking a ma-
neuvering target using bearing-only measurements has been
well studied (e.g., [6]–[8]). The main focus of this thread of
literature is on optimizing an estimator to be robust when
provided arbitrary input. Fewer results exist for structur-
ing the input itself, i.e., designing an optimal sequence of
discrete measurements. Some relevant results are [9], who
provided an action-space search which used the determinant
of the posterior covariance as a utility function and [10],
who numerically calculated an optimal approach using the
Fischer Information Matrix (FIM). These results are useful
for approximating an optimal continuous trajectory, but are
designed for cameras or sonar, which have negligible mea-
surement time. Bishop, [11] directly evaluated the determi-
nant of the FIM to find sufficient conditions for an optimal
measurement sequence. But because the FIM is evaluated
around the true target location, which is unknown in practice,
this result cannot provide time-to-localize guarantees.

In our previous work, [12], we provided an algorithm
based on state-space enumerative search, and compared it
directly to a one-step greedy algorithm. Both algorithms used
the determinant of the posterior covariance but neither could
provide a guarantee about final uncertainty. Furthermore,
discretization and search over state space can be costly, and
both were limited to a fixed-sized displacement between
measurements. Finally, there was no systematic approach
to the ambiguity of measurements. Instead, we implicitly
assumed the most likely measurement was correct. We
address each of these issues in this work: We derive a new
greedy step which provides the next measurement location in
closed-form. This removes the need for a state-space search.
We show how to select measurement locations to limit the
effect of ambiguity, and bound the time spent by the robot
while providing a guarantee of posterior covariance.

The rest of the paper is organized as follows. In the
next section we provide a brief review of the necessary
background and notation. In Section III we show how
we can structure the measurement sequence to deal with
ambiguous measurements, and introduce our algorithm. In
Section IV, we provide a theoretical performance bound
on the algorithm. We evaluate the resulting algorithm in
simulation in Section V and we report on field trials of the
algorithm which demonstrate the feasibility for the intended
application. Due to space limitations, we refer the reader to
the technical report [13] for detailed proofs.

II. PROBLEM FORMULATION

Our problem setup is shown in Figure 2. The goal is to
localize a target, whose true position with respect to a fixed
global frame{G} is x⋆. The robot is initially located at
s0. The robot moves to a location denoted bysi to take

x̂

αi

ẑ

G

si
z⋆

x⋆

Fig. 2. The sensor location,si is described byri = ||x̂− si|| andαi as
shown.x̂i is the current target hypothesis. The predicted measurementsare
shown asẑi (gray line), and the actual noiseless measurement is given by
z⋆ (dashed line).

the ith measurement. The prior target estimate is a 2-D

Gaussian distribution given byN (x̂0,Σ0). The mean and
the covariance of the estimate after theith measurement are
denoted aŝxi andΣi respectively. We refer to the eigenvalues
of Σi as σ2

i (1) and σ2
i (2) for the larger and smaller at

time-stepi, respectively. For convenience of notation and
analysis, we specify sensing locations with respect to the
frame defined by the major and minor axis of the covariance
ellipse. Let ri and αi be the distance and relative angle
betweensi and the major axis of the covariance ellipseΣi,
i.e., the eigenvector corresponding toσ2

i (1).

The ith bearing measurement is given byzi = h(x⋆, si)+
n, where n ∼ N (0, σ2

s) and h(a, b) = tan−1(
by−ay

bx−ax
).

An Extended Kalman Filter (EKF) is used to update the
target estimate. We use an EKF because of its closed-form
representation and low demand on processing power. The
EKF update equations forith measurement are given as [14]:

x̂i = x̂i−1 +Kiyi

Σi = Σi−1 − Σi−1

(

HT
i S

−1
i Hi

)

Σi−1.

with:

Hi = ∇x̂h(x̂i−1, si) =
1

ri

[

− sinαi cosαi

]

Si = HiΣi−1H
T
i + σ2

s

Ki = Σi−1H
T
i S

−1
i

yi = zi − h(x̂, si)

The EKF assumesp(zi|x̂i) ∼ N (h(x̂i, si), Si). In some
applications, particularly mobile target tracking, the equa-
tions for the EKF update include an additive noise term.
It is not included in our algorithm because we assume a
stationary target.

An inverse covariance form of EKF called Extended Infor-
mation Filter (EIF) is defined for the same problem, but in a
form more useful for our analysis:Σ−1

i = Σ−1
i−1+

1
σ2
s
HT

i Hi.

We also use the fact that both the covariance matrixΣ−1



andHTH admit a unitary decomposition, which results in:

Σ−1
i = R(θi−1) · δ

[

1

σ2
i−1(1)

,
1

σ2
i−1(2)

]

·RT (θi−1)

+R(αi + θi−1) · δ
[

0,
1

r2i σ
2
s

]

·RT (αi + θi−1).

(1)

whereR(θ) represents a 2-D rotation matrix with angleθ,

and δ[x, y] =

[

x 0
0 y

]

is a diagonal matrix. Here,θ is the

orientation of the covariance with respect toG.
Let tm be the time it takes to obtain a single measurement.

Our objective is to find a set of measurement locationsS =
{s1, s2, . . . , sN} which reduce both the eigenvalues of the
prior covariance (σ2

0(1), σ
2
0(2)) by a given factorc2d < 1 in

minimal total time,N · tm + tt. We assume that the robot
moves with unit velocity and can turn in negligible time.

Hence our objective is:

minimize
S={s1,...,sN}

N · tm +D(S)

subject to,σN (1) ≤ cd · σ0(1), σN (2) ≤ cd · σ0(2), and
N ≥ 1, whereD(S) is the total distance traveled by the
robot for the given set of sensing locations.

III. A CTIVE LOCALIZATION ALGORITHM

We define a greedy algorithm which incorporates all prior
information and outputs the next measurement location. At
each step, the input to our algorithm is the prior target
estimateN (x̂i−1,Σi−1). The output of our algorithm is the
locationsi from which the robot should obtain the next mea-
surement. Measurement locations are chosen based on two
factors. We seek measurement locations which can minimize
the largest eigenvector at each time step. This is subject to
a caution constraint, which represents the possibility of the
target being behind the sensor.

To show the intuition for a cautious strategy, consider the
scenario shown in Figure 2. The EKF predicts measurements
that correspond to the target hypothesis,x̂i, while the mea-
surements are actually distributed aroundx⋆. If x⋆ is nearly
collinear with the sensor and hypothesis as shown, then the
infinite line sensor is very likely to produce measurements
which show a low innovation. This is in direct conflict
with the true (but unknown) target location. In the update
step of the EKF, we are forced to chose from the two
possible measurements (ẑ which agrees witĥx, or π+this
measurement) or maintain two hypotheses (one for each).
According to the EKF, the lower probability measurement
(π + ẑ) is actually the correct one.

Intuitively, this situation occurs when the angle between
ẑ and z⋆ is greater thanπ2 which implies the true target
is behind the sensor. Or, ifyi > π

2 or yi < −π
2 , it is

likely that the target was behind the sensor. Using this
intuition, we can plan the measurement sequence to guard
against this possibility, which allows us to use the most likely
measurement while limiting the possibility that this is the
incorrect choice.

Let the probability that the true target is behind the sensor,
with respect to the target hypothesis be,

pb(si, x
⋆) = p

(

yi|x̂i >
π

2

)

+ p
(

yi|x̂i < −
π

2

)

(2)

Due to the Gaussian prior, this probability is non-zero for
any candidate sensor location. Therefore we define a risk
termβ and seek measurement locations such thatpb(si, x̂) <
β. If an algorithm can assure this for each measurement
location, we call itβ-cautious. In [13] we prove that the
caution constraint provides an upper bound on the acceptable
variance of yi, given by σβ , which constrains only the
range at which the sensor can take measurements. The range
constraint is given by:

ri ≥
√

σ2
i (1) · sin2 αi + σ2

i (2) · cos2 αi

σ2
β − σ2

s

(3)

whereσβ =
π

2 · φ−1(1− β
2 )

and φ(·) is the cumulative

Gaussian distribution. We assumeσβ > σs. If this is not the
case, intuitively, the sensor is too noisy to satisfy caution
given the value ofβ assigned. In Section V we show that
reducingβ arbitrarily drives the time spent by the algorithm
to infinity. This is because the required rangeri becomes
so great that the measurements have little effect on the
hypothesis. However, the number of measurements follows
in closed form (see Section IV), so the effect ofβ can be
evaluated off-line.

si

si+1
x̂ix̂i+1

θiθi+1

Fig. 3. One measurement step of the cautious strategy presented in
Algorithm 1.

Algorithm 1 β-Cautious Strategy(s0, x̂0,Σ0,∆θ, β, σ2
s)

1: σ2
β ←

π

2 · Φ−1(1− β
2 )

2: σ2
0(1), σ

2
0(2)← eigenvalues(Σ0)

3: i← 1
4: while σi(1) ≥ cd · σ0(1) or σi(2) ≥ cd · σ0(2) do
5: Polar frame at̂xi−1 aligned withσi−1(1)

6: ri ←
√

σ2

i−1
(1)

σ2

β
−σ2

s

7: Let si: (ri, αi) be the closer of(ri, π
2 ) or (−ri, π

2 ).
8: Collect measurementzi from si
9: x̂i,Σi ← ekf update(zi, σs, x̂i−1,Σi−1)

10: σ2
i (1), σ

2
i (2)← eigenvalues(Σi)

11: i← i+ 1
12: end while
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Fig. 4. A simulation execution of the cautious strategy. Top:the full run.
Bottom: Detail of the boxed region in the first figure. Red denotes the final
target, black is the true target, and green are the sensor locations. In this
example, the robot successfully keeps the target hypothesison the same side
as the true target location, with no knowledge of the true target.

Algorithm 1 presents the details of our strategy and
Figure 3 shows a measurement step of Algorithm 1 in action.
x̂i−1 andΣi−1 = δ(σ2

i−1(1), σ
2
i−1(2)) is the estimate of the

target before theith measurement. Recall that(ri, αi) are the
polar coordinates in the frame of̂xi−1 with the axis aligned
with the eigenvector corresponding toσ2

i−1(1). Algorithm 1

chooses the measurement locationsi : (

√

σ2

1
(i−1)

σ2

β
−σ2

s

, π
2 ) .

After updating the target estimate using the EKF update
equation with measured bearingzi, the target estimate shifts
to a new locationx̂i, σ2

i−1(1) decreases, andσ2
i−1(2) re-

mains unchanged. The new measurement location is chosen
perpendicular to the eigenvector corresponding toσ2

i−1(2).
We show in Lemma 1 the covariance matrix does not rotate.
The robot then travels to this new locationsi+1 (shown as
a dashed line in Figure 3).

This process continues until both the eigenvalues are
reduced by the desired factor. The algorithm is guaranteed
to terminate since for every measurement steps, the larger
eigenvalue is guaranteed to decrease. In fact, we bound the
number of measurements taken by our strategy in Lemma 4.

In practice, there are two candidate points which satisfy
the cautious requirement: at(ri, π

2 ) and reflected across the
target eigenvector, at(ri,−π

2 ). We can chose the closer of

the two to save travel time.
Figure 4 shows a complete simulated run of our algorithm.

The robot travels in a zig-zag fashion towards target, and
after each measurement update, the target estimate shifts
(again in a rectilinear sense) towards the true target location.

Because the sensing range,ri monotonically decreases, we
expect that the time taken to travel to new sensing locations
would also decrease. We also expect the target estimate to
shift less with each successive measurement as the certainty
of the estimate increases. In the next section we use these
intuitions to prove an upper bound on the time required to
localize the target.

IV. A NALYSIS

Our analysis proceeds in two parts: We first bound the
total time taken by the cautious algorithm, for a given input
instance. We call thisTALG. We then derive a lower bound
on the time for any bearing-based localization strategy, not-
necessarily cautious, which we callTLB . We then take the
expectation of these times with respect to the possible true
target locations, and show that the ratio is bounded above
by a constant. The main structural lemmas are stated here to
provide intuition, but the proofs are deferred to [13].

Lemma 1: For the ith measurement ifαi = 0 or αi =
π
2 , then only one eigenvalue of the posterior covarianceΣi

decreases, and the rotation of the posterior is the same as
the rotation of the prior.

Lemma 2: For a given range from target,ri, and an
eigenvalue we wish to reduce, a maximal reduction occurs
when we setαi = π

2 with respect to the corresponding
eigenvector.

Lemma 3: The maximum shift in target hypothesis is,

||x̂i − x̂i−1|| ≤ π
σ2
i

σ2

i

ri
+ riσ2

s

where the measurement location was chosen according to
Lemma 2.

A. Upper Bound on Algorithm Time

To derive TALG We begin by proving a bound on the
number of measurements required for a givencd, then
show the sum of the distances between these measurement
locations is bounded.

Lemma 4: Define γ =
σ2
β

σ2
s

> 1. For a given acceptable

risk parameterβ, Nz = ⌈4 logγ
(

1
cd

)

⌉ measurements are
sufficient for the cautious strategy to achieve the given
desired reductioncd,

Lemma 5: If Σ0 is circular, the total distance traveled by
the robot during a complete execution of Algorithm 1 is
bounded i.e.,

DA ≤ d(s0, s1) + 2σ0(1)
1− cd√
γ − 1

(√
2 + π γ−1

γ

σs

√
γ − 1

)

(4)

A natural extension shows that this is an upper-bound for
the non-circular case. By combining Lemmas 4 and 5, we



can bound the total time spent by a cautious strategy, which
holds for any problem instance.

Theorem 1: The total time spent by aβ-cautious strategy
is bounded such that,

TALG ≤ Nz · tm +DA (5)

with constantsNz andDA from Lemmas 4 and 5, respec-
tively.

B. Lower Bound on Bearing-based Localization

We seek to bound the effect of ambiguity on the time to
localize a target. To do this, we deriveTLB , a lower bound
on the time required to satisfy the same objectives for any
strategy, regardless of ambiguity. To eliminate the effectof
the prior estimate, we allow theLB strategy to have access
to the true target location. We analyze a simplified objective:
Reduce only one eigenvalue by the required constant.

Lemma 6: Given an optimal measurement sequenceSO

for the one dimensional eigenvalue reduction problem there
exists a sequenceS′, with measurements taken on a line
perpendicular to the eigenvector which takes no longer
to perform, and produces at least the same reduction in
uncertainty.

Lemma 7: Let SO be an optimal measurement sequence
of size k measurements. Then a sequenceS⋆ in which all
k measurements occur at the same point produces the same
change in eigenvalue in no worse time.

We combine these observations to produce a lower bound
on any not-necessarily cautious, optimal measurement se-
quence. We denote this sequence asS⋆, and its time cost as
TLB .

Theorem 2: Let S⋆ be the measurement sequence de-
scribed in Lemma 7. The minimum time taken byS⋆, which
is a lower bound for any strategy, is given by

TLB ≥ T (S⋆) ≥ max(r⋆0 −
σ2
max

2tm( 1
c2
− 1)σ2

s

+ tm, tm) (6)

whereσmax = max(σ1,0, σ2,0), r⋆0 is the range to the true
target location at time 0, andr⋆0 ≥ r⋆k.

Let the sequence of sensor locations given by aβ-cautious
strategy be described bySβ with time costTALG(X ) for a
specific problem settingX . We can state the following.

Theorem 3: The cautious strategy isC-competitive.
Proof: We show:

E[TALG(X ))]− C ×E[TLB(X ))] ≤ b

Whereb does not depend on the input instance andE[·] is
the expectation overx⋆ [13].

V. EVALUATION

In the previous section we reported the derivation of the
expected performance of the algorithm. In this section we
evaluate this performance in a variety of simulations and real-
world experiments. We first derive the expected performance
of our sensing platform as an example.

To detect tagged fish, we use a loop antenna and attached
radio receiver. A bearing measurement is constructed by
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Fig. 5. Simulation study of the effect ofβ on number of measurements,
(top), and final accuracy (bottom). Note that a smaller value ofβ enforces
more caution in the measurements.

sampling the RSSI as the antenna is rotated. This takes
approximately 1 minute due to the low duty cycle of the
radio tags. Since our robot travels at approximately 1 meter
per second,tm ≈ 60. We have empirically estimatedσs as
15 degrees [12]. Supposing our initial hypothesis satisfies
σ0(1) = σ0(2) = 50 meters, and we begin our tracking at
r0 ≈ 60 meters, we can calculate the expected performance
using (5). In this case, we find thatN = 4 measurements
will be sufficient to reduce the one sigma bound to less than
6 meters. During this time we expect the robot to travel less
than 220 meters, resulting in a competitive ratio of less than
about 4.

A. Simulations

To gain further insight into the expected performance of
a β-cautious algorithm for various starting parameters, we
conducted simulation studies. We simulated a real-world
localization scenario using the noise and estimate uncertainty
we have encountered.

In Table I we show the results of approximating the



TABLE I

C FOR VARIOUS ALGORITHM PARAMETERS.

r̂0 cd tm β Simulated Ratio Theoretical Upper Bound

{20, 50, 200} .1 60 .10 {3.6366, 2.8853, 1.6651} {7.2853, 5.4477, 2.5477}
100 {.25 .1 .01} 60 .10 {1.3862, 2.1418, 2.8044} {2.2164, 3.5869, 4.9432}
100 .1 {20, 60, 110} .10 {1.6046, 2.1398, 2.5568} {2.3268, 3.5869, 4.5461}
100 .1 60 {.10, .2, .5} {2.6450, 2.5699, 1.5946} {3.9104, 3.8353, 2.2264}

s0
s1

s2

s3

s4

Final Estimate
True Target

Fig. 6. A successful field trial of the cautious algorithm. Parameters for this
trial wereσ2

β
= 1 andσ2

s =
(

π
8

)

2. The 1σ uncertainty ellipses are shown
for the prior and final estimates. The final error was less than 5meters
after only 4 measurements. The total experiment area was approximately
70 meters by64 meters.

ratio C =
E[TALG]

E[TLB ]
. The initial hypothesis was fixed with

x̂0 = (0, 0) andσ0(1) = σ0(2) = 60. We varied the starting
parameters initial rangêr0, desired reductioncd, caution
parameterβ, and measurement timetm. True target locations
were sampled with replacement from the target hypothesis,
the cautious algorithm run, and the mean of distance traveled
and number of measurements were used to estimate the real-
world execution time. This was compared directly to the
predicted execution given byTLB from Theorem 2.

In Figure 5 we show the effect of introducingβ-caution to
a greedy measurement strategy. Measurements were chosen
to minimize the posterior uncertainty for a range of values
of β. Each execution was terminated when it produced an
uncertainty with eigenvalues below some constant. From
these we can see that a cautious strategy tends to reduce final
error (measured as||x̂ − x⋆||), but excessively small values
of β can significantly increase the number of measurements
required.

B. Field Experiments

We also implemented the algorithm and tested it using
a mobile chassis. The chassis is pictured in Figure 1. A
transmitting radio tag was placed in a field measuring
approximately 64 by 70 meters. Previously, we determined
this to be approximately the maximum detection distance
of our receiver. The robot was given a starting hypothesis
which encompassed the field. The starting parameters and
performance closely match the parameters derived at the be-
ginning of this section. Specifically, the final covariance was
less than 6 meters, one sigma bound, and four measurements

were required.

VI. CONCLUSION

We presented a novel variant of a greedy bearing-only
strategy, which we call cautious greedy. We have shown that
a cautious strategy can minimize the effect of ambiguity with
an infinite line sensor. We then bounded the performance
of a cautious strategy, providing a worst-case guarantee on
the time taken by the algorithm. We have shown that the
expected performance times for real world applications is
often better than the theoretical result.
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