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Abstract— We study the problem of minimizing the time to ’ = 3
accurately localize a target using radio-based telemetry. The 7
directional nature of the antenna allows us to obtain bearing- e
to-target sensor measurements. There are two critical attribtes
that seperate our setup from the majority of bearing-only
tracking literature: ambiguity and long measurement time.

We provide a sensing strategy which midigates the effect of
ambiguity, and prove that the time required to localize a target
is less than a constant times any bearing-based localization
strategy.

I. INTRODUCTION

In active localization, the objective is to plan measuretmen
locations for a mobile robot so as to accurately localize a
target. In most applications, the true location of the taige
unknown. Instead, the robot must estimate the target’'s loca
tion from its measurements. The primary source of difficulty
in active localization problems is their online nature: Vit
each measurement, the robot obtains more information about
the target’s location which should be incorporated into the
choice of future measurement locations. The online nature
of the decision making process makes it difficult to prowd

1. The mobile robot, loop antenna, and sensing equipriiéetpicture
theoretical guarantees about the performance of an actlwés taken during field trials on Lake Gervais, MN.
localization algorithm.

The motivating application for our study is localizing
radio-tagged invasive fish in lakes. In this setting, seViesa g bearing measurement. During this time the robot must
are caught and surgically implanted with low-power radigemain stationary to avoid changing the range or bearing
transmitters. The tagged fish are released, and eventually the target. Our objective is to find a series of discrete
associate with larger groups. During the winter monthsneasurements which provide a good final estimate of the
the majority of a lake’'s population tends to aggregate an@rget location. We seek to minimize the time taken to
remain stationary. By tracking the radio-tagged fish, whiclpcalize the target for two reasons: (i) We would like to
eventually join these aggregations, the population can hkfinimize the probability that the target moves during the
found and targeted for removal [1] Since manual mOﬂitOfinﬁ]easurement process, and (||) to possib|y track mu|tip|e
of tagged fish is time-consuming and potentially dangerougrgets. Similar objectives have been studied in the contex
in harsh conditions, we are developing a robotic system ¥ bearings-only localization, but the long measuremeneti
continuously monitor tagged fish. Our ultimate goal is taand ambiguity of this sensing modality set this problem &par
monitor many fish in a lake to detect aggregations. from the majority of the literature on bearings-only tramuki

Our platform, shown in Figure 1, is composed of a mobile The infinite-line sensor was considered by [2], in the con-
robot and a directional antenna mounted on a servo mot@gxt of pursuit-evasion games. A finite-time capture stte
By rotating the antenna and flndlng the direction with tthas provided by using pairs of measurements to resolve
strongest signal strength, one can compute a line thatpasgge ambiguity. But with sensor noise, this strategy cannot
through the robot and the radio tag. The exact bearing {farantee capture, because large measurement noise makes
unknown due to the symmetric nature of the antenna. F@fincreasingly difficult to resolve the true bearing (Seé [3
this reason, we refer to this type of sensor as an infinie-linggr more detail).
sensor. Since the radio tags transmit with a low duty cycle Thjs problem has been considered in the wireless sensor
(less than 1 Hz), it can take up to one minute to construgletwork community, since direction of arrival, and therefo

a bearing measurement, can be estimated from received radio
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provide sensing locations to minimize the resulting error.
Similarly, Derenick et al. [5] considered radio-based bagar
measurements in the context of cooperative localization fo
teams of mobile robots. However, the robots were consid-
ered to be arbitrarily moving, and no motion strategy was
provided.

Disregarding ambiguity, the problem of tracking a ma-
neuvering target using bearing-only measurements has been
well studied (e.g., [6]-[8]). The main focus of this thread o

literature is on optimizing an estimator to be robust whe'n_ig. 2. The sensor location; is described by — || — s|| anda; as

provided arbitrary input. Fewer results exist for stru€turshown.; is the current target hypothesis. The predicted measureraests
ing the input itself, i.e., designing an optimal sequence athown as?; (gray line), and the actual noiseless measurement is given by

discrete measurements. Some relevant results are [9], who(dashed line).
provided an action-space search which used the determinant
of the posterior covariance as a utility function and [10],
who numerically calculated an optimal approach using thehe i** measurement. The prior target estimate is & 2-
Fischer Information Matrix (FIM). These results are usefuGaussian distribution given by (o, ¥). The mean and
for approximating an optimal continuous trajectory, bug arthe covariance of the estimate after #& measurement are
designed for cameras or sonar, which have negligible medenoted as; andX; respectively. We refer to the eigenvalues
surement time. Bishop, [11] directly evaluated the determobf 33; as ¢2(1) and ¢?(2) for the larger and smaller at
nant of the FIM to find sufficient conditions for an optimaltime-stepi, respectively. For convenience of notation and
measurement sequence. But because the FIM is evaluatathlysis, we specify sensing locations with respect to the
around the true target location, which is unknown in pragtic frame defined by the major and minor axis of the covariance
this result cannot provide time-to-localize guarantees. ellipse. Letr; and a; be the distance and relative angle
In our previous work, [12], we provided an algorithmbetweens; and the major axis of the covariance ellipsg
based on state-space enumerative search, and compareikif the eigenvector correspondingdd(1).

directly to a one-step greedy algorithm. Both algorithmsdis  1he ;th pearing measurement is given by—= h(z*, s;)+
the determinant of the posterior covariance but neithetdcou,, \vnere n, ~ N(0,02) and h(a,b) = tan—l(b;’“y)
) 'y Ys ) b '

providg a.guarantee about final uncertainty. Furthermor@,, extended Kalman Filter (EKF) is used to u’f)a(gte the
discretization and search over state space can be cosly, §get estimate. We use an EKF because of its closed-form
both were limited to a fixed-sized displacement betweefépresentation and low demand on processing power. The

measurements. Finally, there was no systematic approagRe ypdate equations fat" measurement are given as [14]:
to the ambiguity of measurements. Instead, we implicitly

assumed the most likely measurement was correct. We
address each of these issues in this work: We derive a new Ty = Ti—1 + Ky
greedy step which provides the next measurement location in Y=Y — i (HZTS[lHZ-) Yiq.
closed-form. This removes the need for a state-space search
We show how to select measurement locations to limit the
effect of ambiguity, and bound the time spent by the roba¥ith:
while providing a guarantee of posterior covariance.

The re_st of the paper is o_rganizgd as follows. In the Hi = Vah(iio1,8;) = 1 [_ sin av; Cosai]
next section we provide a brief review of the necessary Ty
background and notation. In Section Ill we show how S; = H;Y_1HI + o2
we can structure the measurement sequence to deal with 5 _ v p7g-1
ambiguous measurements, and introduce our algorithm. In P
Section IV, we provide a theoretical performance bound
on the algorithm. We evaluate the resulting algorithm in
simulation in Section V and we report on field trials of the 1A N
algorithm which demonstrate the feasibility for the intedd The EKF assumes(zi|z;) ~ N(h(#i,s:), %). In some
application. Due to space limitations, we refer the reader
the technical report [13] for detailed proofs.

Yi =z — h(Z, 5;)

applications, particularly mobile target tracking, theuaq

tions for the EKF update include an additive noise term.

It is not included in our algorithm because we assume a
Il. PROBLEM FORMULATION stationary target.

Our problem setup is shown in Figure 2. The goal is to An inverse covariance form of EKF called Extended Infor-

localize a target, whose true position with respect to a fixeation Filter (EIF) is defined for th_el same_lprobllem,Tbut ina
global frame {G} is z*. The robot is initially located at 'O"M More useful for our analysi&l; = %, -y + 75 Hi Hi.
sp. The robot moves to a location denoted byto take We also use the fact that both the covariance mairix



and HT H admit a unitary decomposition, which results in: Let the probability that the true target is behind the sensor
with respect to the target hypothesis be,

1 1
2= R(0i1)-0 [} - RT(0:1) o o
i (1) 0 (2) po(si,z") =p (ylev > 5) +p (yq\rq < 75) )
1 . . . e
+ R(a; +0;-1) -0 {0 - } RT(az +0;-1). Due to the Gaussian prior, this probability is non-zero for
rios 1) any candidate sensor location. Therefore we define a risk

term 3 and seek measurement locations suchgp@t;, &) <
where R(#) represents a 2 rotation matrix with angleg, 3. If an algorithm can assure this for each measurement
_|=z 0] . . . : location, we call it5-cautious. In [13] we prove that the
an.d 6[x’_y] o L? Y |s. a d|ag(.)nal matrix. Herej is the caution constraint provides an upper bound on the acceptabl
orientation of the covariance with respect@o variance ofy;, given by oz, which constrains only the

Lett,, be the time it takes to obtain a single measurementange at which the sensor can take measurements. The range
Our objective is to find a set of measurement locatiSns  constraint is given by:

{s1, 82,...,8n} which reduce both the eigenvalues of the
prior covariance €3(1),03(2)) by a given factorc? < 1 in o2(1) - sin® o + 02(2) - cos® o
minimal total time,N - t,, + t;. We assume that the robot i 2 02 _ o2 ®3)
moves with unit velocity and can turn in negligible time. p °
Hence our objective is: whereos = 2¢+1ﬁ) and ¢(-) is the cumulative
Sm{lnlmize} N -t + D(S) Gaussian distribution. We a%sumg > os. If this is not the
S1yeeey SN

case, intuitively, the sensor is too noisy to satisfy cautio
subject t0,on (1) < ¢q - 00(1), on(2) < ¢4 - 00(2), and given the value ofg assigned. In Section V we show that

N > 1, where D(S) is the total distance traveled by thereducingg arbitrarily drives the time spent by the algorithm

robot for the given set of sensing locations. to infinity. This is because the required rangebecomes
so great that the measurements have little effect on the
IIl. ACTIVE LOCALIZATION ALGORITHM hypothesis. However, the number of measurements follows

We define a greedy algorithm which incorporates all prioin closed form (see Section IV), so the effect @fcan be
information and outputs the next measurement location. Avaluated off-line.
each step, the input to our algorithm is the prior target ..
estimateN'(#;_1, %;_1). The output of our algorithm is the S
locations; from which the robot should obtain the next mea-
surement. Measurement locations are chosen based on two
factors. We seek measurement locations which can minimize .
the largest eigenvector at each time step. This is subject to  s;)\¢f1
a caution constraint, which represents the possibility of the
target being behind the sensor.

To show the intuition for a cautious strategy, consider the
scenario shown in Figure 2. The EKF predicts measuremeritg. 3. One measurement step of the cautious strategy presénte
that correspond to the target hypothesis, while the mea- Algorithm 1.
surements are actually distributed arourtd If z* is nearly
collinear with the sensor and hypothesis as shown, then the
infinite line sensor is very likely to produce measurementdigorithm 1 5- Caut|ous Stratedyo, 0, %o, A0, 8, 07)
which show a low innovation. This is in direct conflict 1. 42  — °
with the true (but unknown) target location. In the update 2.0~ 1(1 - *)
step of the EKF, we are forced to chose from the two2: 05(1),05(2) « eigenvaluesto)
possible measurement$ (vhich agrees withz, or w+this 311
measurement) or maintain two hypotheses (one for eachy: While o;(1) > cq - 00(1) 0r 0(2) > cq - 00(2) do
According to the EKF, the lower probability measurement5: ~ Polar frame ati;—; aligned witho;_1(1)

(w + 2) is actually the correct one. 6 1 oi 1(12)

Intuitively, this situation occurs when the angle between _ R . .
2z and 2* is greater thang which implies the true target ” Let s;: (ri, ;) be the closer ofr;, 5) or (=ri, 3).
is behind the sensor. Or, if; > T ory; < —Z, it is Collect measuremeny; from s;
likely that the target was behind the sensor. Using this® iy 2 <_2ekf*Upd,‘"‘tQZ“JS’xi*hEifl)
intuition, we can plan the measurement sequence to guatd 7 (1?’011 (2) + eigenvaluest,)
against this possibility, which allows us to use the mostljik 1% i< i+1
measurement while limiting the possibility that this is thel2 €nd while
incorrect choice.

...
.
"




1000- " the two to save travel time.
> Figure 4 shows a complete simulated run of our algorithm.
The robot travels in a zig-zag fashion towards target, and
after each measurement update, the target estimate shifts
(again in a rectilinear sense) towards the true targetilmtat
Because the sensing rangemonotonically decreases, we
expect that the time taken to travel to new sensing locations
would also decrease. We also expect the target estimate to
shift less with each successive measurement as the cgrtaint
5, of the estimate increases. In the next section we use these
o intuitions to prove an upper bound on the time required to
~1200} _ _ ) ) localize the target.
-1000 -500 0 500 1000
X(m) IV. ANALYSIS
. Our analysis proceeds in two parts: We first bound the
-500 total time taken by the cautious algorithm, for a given input
9% instance. We call thi§ 4. We then derive a lower bound
on the time for any bearing-based localization strategis no
700 necessarily cautious, which we cdl},z. We then take the
E 750 expectation of these times with respect to the possible true
800 S~ | i target locations, and show that the ratio is bounded above
/ NSl % 2 by a constant. The main structural lemmas are stated here to
Q provide intuition, but the proofs are deferred to [13].
-950 [ Lemma 1: For thei** measurement ity; = 0 or o; =
*‘°°°\.\\./ i // Z, then only one eigenvalue of the posterior covariakge
800 -200 -0 5 e 2000 500 decreases, and the rotation of the posterior is the same as
the rotation of the prior.
Fig. 4. A simulation execution of the cautious strategy. Tiye: full run. Lemma 2: For a given range from target;;, and an
Bottom: Detail of the boxed region in the first figure. Red desdhe final . . . .
target, black is the true target, and green are the sensatidos. In this elgenvalue we wish to reduce, a maximal reduction occurs
example, the robot successfully keeps the target hypothedise same side When we setoa; = 5 with respect to the corresponding
as the true target location, with no knowledge of the trugetr eigenvector.
Lemma 3: The maximum shift in target hypothesis is,
2
Algorithm 1 presents the details of our strategy and |2 — 21| < WUZL
Figure 3 shows a measurement step of Algorithm 1 in action. _—+ 02
&1 andX; 1 = 6(02_(1),02 ,(2)) is the estimate of the
target before thé" measurement. Recall that;, «;) are the
polar coordinates in the frame a@f_; with the axis aligned
with the eigenvector corresponding 4§ ,(1). Algorithm 1 A. Upper Bound on Algorithm Time

chooses the measurement locatign ( zﬁz(izz)’%) _ To derive T4 We begin by proving a bound on the
BTs number of measurements required for a givep then

After updating the target estimate using the EKF updatgnow the sum of the distances between these measurement
equation with measured bearing the target estimate shifts |gcations is bounded.

to a new locationt;, o2 (1) decreases, and? ,(2) re- 4 Defi 0}
mains unchanged. The new measurement location is choserjremma - Delinery = CTg
perpendicular to the eigenvector correspondingrfo, (2). sk parameters, N. = [4log, (L)] measurements are

. : : o
We show in Lemma 1 the covariance matrix does not MOl ficient for the cautious strategy to achieve the given
The robot then travels to this new locatiep.; (shown as desired reductior,

a dashed line in Figure 3). Lemma 5: If X is circular, the total distance traveled by

This process continues until both the eigenvalues atgq ropot during a complete execution of Algorithm 1 is
reduced by the desired factor. The algorithm is guarante%unded ie.

to terminate since for every measurement steps, the larger .
eigenvalue is guaranteed to decrease. In fact, we bound theD oy 950 (1 1—cq V2 + W% @
number of measurements taken by our strategy in Lemma 4. — 4 = (50, 51) + 200 )\ﬁ— 1

In practice, there are two candidate points which satisfy
the cautious requirement: at;, 7) and reflected across the A natural extension shows that this is an upper-bound for
target eigenvector, afr;, —%). We can chose the closer of the non-circular case. By combining Lemmas 4 and 5, we
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where the measurement location was chosen according to
Lemma 2.

> 1. For a given acceptable
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can bound the total time spent by a cautious strategy, which -5 Number of measurements vs

holds for any problem instance.
Theorem 1. The total time spent by &-cautious strategy
is bounded such that, 20t
Targ < Nzt + Dy ) E’
(3]
with constantsV, and D4 from Lemmas 4 and 5, respec- 2 15
tively. g
B. Lower Bound on Bearing-based Localization g 10
We seek to bound the effect of ambiguity on the time to §
localize a target. To do this, we deri\fg,z, a lower bound 5t
on the time required to satisfy the same objectives for any
strategy, regardless of ambiguity. To eliminate the eff#fct ‘ ‘ ‘ ‘
the prior estimate, we allow theB strategy to have access % 0.2 0.4 0.6 0.8 1
to the true target location. We analyze a simplified objectiv P
Error vs B

Reduce only one eigenvalue by the required constant.
Lemma 6: Given an optimal measurement sequerte

for the one dimensional eigenvalue reduction problem there 700}
exists a sequencg’, with measurements taken on a line
perpendicular to the eigenvector which takes no longer

to perform, and produces at least the same reduction
uncertainty.

Lemma 7: Let Sp be an optimal measurement sequence

of size k measurements. Then a sequetstein which all

k measurements occur at the same point produces the sam

change in eigenvalue in no worse time.

We combine these observations to produce a lower bound
on any not-necessarily cautious, optimal measurement se-

guence. We denote this sequenceSasand its time cost as

800

600}
in g soof

4001

error in hypothesis

0 0.2 0.4 0.6 0.8 1
P

Theorem 2: Let S* be the measurement sequence de-

scribed in Lemma 7. The minimum time taken By, which
is a lower bound for any strategy, is given by

o2

max
2n(L — 1)o7 | fmetm) (8]
whereo,q; = max(o1,0,02,0), r5 is the range to the true
target location at time 0, and; > ;.

Let the sequence of sensor locations given lgt@autious
strategy be described bys with time costTs.c(X) for a
specific problem setting’. We can state the following.

Theorem 3: The cautious strategy i§-competitive.

Proof: We show:

E[Tarc(X))] — C x E[TLp(X))] <b

Trp > T(S*) > max(rg —

Whereb does not depend on the input instance &jig is
the expectation over* [13]. [ ]

V. EVALUATION

Fig. 5. Simulation study of the effect ¢f on number of measurements,
(top), and final accuracy (bottom). Note that a smaller valug ehforces
more caution in the measurements.

sampling the RSSI as the antenna is rotated. This takes
approximately 1 minute due to the low duty cycle of the
radio tags. Since our robot travels at approximately 1 meter
per secondt,, =~ 60. We have empirically estimatedl, as

15 degrees [12]. Supposing our initial hypothesis satisfies
o0(1) = 00(2) = 50 meters, and we begin our tracking at
ro =~ 60 meters, we can calculate the expected performance
using (5). In this case, we find th&d = 4 measurements
will be sufficient to reduce the one sigma bound to less than
6 meters. During this time we expect the robot to travel less
than 220 meters, resulting in a competitive ratio of lesstha
about 4.

A. Smulations

In the previous section we reported the derivation of the
expected performance of the algorithm. In this section we To gain further insight into the expected performance of

evaluate this performance in a variety of simulations ast re

a (-cautious algorithm for various starting parameters, we

world experiments. We first derive the expected performang®nducted simulation studies. We simulated a real-world

of our sensing platform as an example.

localization scenario using the noise and estimate uringrta

To detect tagged fish, we use a loop antenna and attachae have encountered.
radio receiver. A bearing measurement is constructed byIn Table | we show the results of approximating the



TABLE |
C FOR VARIOUS ALGORITHM PARAMETERS

\ 7o \ cd \ tm \ B \ Simulated Ratio [ Theoretical Upper Bound
{20, 50, 200 1 60 10 {3.6366, 2.8853, 1.6631| {7.2853, 5.4477, 2.54%7
100 {25.1.0% 60 10 {1.3862, 2.1418, 2.8044 | {2.2164, 3.5869, 4.9432

100 A {20, 60, 110 10 {1.6046, 2.1398, 2.558| {2.3268, 3.5869, 4.5441

100 1 60 {10, .2, .5 | {2.6450, 2.5699, 1.5946| {3.9104, 3.8353, 2.2284

were required.

VI. CONCLUSION

We presented a novel variant of a greedy bearing-only
strategy, which we call cautious greedy. We have shown that
a cautious strategy can minimize the effect of ambiguityhwit
an infinite line sensor. We then bounded the performance
of a cautious strategy, providing a worst-case guarantee on
the time taken by the algorithm. We have shown that the
expected performance times for real world applications is
often better than the theoretical result.
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