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Abstract In this paper, we study a problem encountered during ourioggefforts
to locate radio-tagged fish aggregations with robots. Thblpm lies at the intersec-
tion of search-based methods whose objective is to detacgjatt and active target
localization methods whose objective is to precisely liaegd target given its initial
estimate. Real-world sensing constraints such as limiteldumknown range, large
measurement time, and ambiguity in bearing measuremerks inanperative to
have an intermediate initialization phase to transitionfisearch to localization. We
present a local search strategy aimed at reliably initiedizan estimate for a single
target based on observations from field experiments. Wedkiemd this strategy to
initialize multiple targets, exploiting the proximity obarby aggregated tagged fish
to decrease the cost of initialization per target. We evalttze performance of our
algorithm through simulations and demonstrate its utilitpugh a field experiment
where the robot successfully detects, initializes and tbealizes nearby targets.

1 Introduction

We are developing a robotic system (Figure 1) and algoritfitis 11] to enable
a mobile sensor network to monitor the common carp (Cypricarpio), an in-
vasive fish. The common carp is an ecologically damagindnfvaser fish found in
many regions around the world [14]. Biologists are intexds$h developing efficient
methods for controlling carp populations. To this end, tbatch a small sample of
the population and implant each fish with radio transmit{eags). These tagged
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Fig. 1 Our robotic system consists of radio tags, a radio antenna aniyeeoeounted on au-
tonomous boat in summer and wheeled rover in winter (to operat@pen lakes).

fish are reintroduced to the lakes and periodically traclsdguradio receivers over
the course of a year. When multiple tagged fish seem to aggraga assumed a
larger population is nearby. When these large aggregatiboarp are found, typ-

ically during the winter, they can be removed by netting.sTjfiovides a safe and
environmentally-friendly method for controlling the pdation of carp.

The radio tags (Figure 1) are small, low duty-cycle trangrstwhich are im-
planted under the skin of the fish. Each tag emits a pulsedils@gna dedicated
frequency approximately once per second. A human operatoies a loop an-
tenna and a receiver which converts the signal to a receigedlstrength indicator
(RSSI). By monitoring the RSSI and rotating a directionainsitive antenna, the
operator can discern a bearing to the radio tag. Typicallyradn operator will take
2-3 bearing measurements to estimate the location of onditagever, this man-
ual tracking approach is tedious, time consuming and plyssiccurate at times.
Therefore, we believe that this problem is a good applicdiio robotics.

Our overall objective in this application is as follows: @iva list ofN fre-
quencies (one per tagged fish), each of which can be detegtéielrobot at a
unique range;, localize each target to a desired accuracy in bounded tintgec-
tion 3.1, we discuss our previous work where we patrtitios fitoblem in two sep-
arate phases: (Bearch phase where the objective is to find a location for the robot
within the sensing range of each target, andl(@alization phase where the robot
uses bearing measurements to reduce the uncertainty iartjet’s estimate.

During field tests of this system, we found that the locaioratoutine was sen-
sitive to the accuracy of the initial estimate. Construgtinconsistent, reasonably
certain prior estimate in limited time has proven to be adliffitask. The problem
becomes further challenging because the sensing rangediatiual tags can vary
based on the depth of the fish, the age of the tag, and otheoamental factors.
For example, Figure 2 shows a field trial where the robot cowlidcomplete the
triangulation due to an incorrect initialization. The tatrgvas initialized with a 2D
Gaussian distribution centered at the location where thetrfirst moved into the
sensing range of the tag, with a variance based on empistied&es of the sensing
range. However, the variance was set too low and as suchitia¢éstimate was not
consistent. During triangulation, the robot moved to atiecewhich fell outside the
sensing range of the target, and the final estimate was widreg.obot successfully
triangulated the same tag in another run where the inittanese (not shown for
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clarity) was consistent. This indicates the importanceaftinig with a good initial
estimate. Therefore, we present a local search strategyhwdifter detecting a target
during the search phase,

1. Initializes a consistent estimate of the target location
2. Maps a region from which bearing measurements are liketyitceed,
3. Exploits clustering behavior of the fish to locate neadrgets efficiently.

After presenting the details of the search strategy anchidyais in Section 4, we
evaluate the strategy through simulations (Section 5)pagsent results from a field
experiment (Section 6). The field trial demonstrates thapooposed initialization

strategy is effective, and promising for large-scale fetexperiments. We believe
our proposed approach of search, initialization, and Ipatibn should be appli-

cable for other applications where one or more robots atethwith accurately

locating one or more targets in bounded time.
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Fig. 2 Failed triangulation due to incorrect initialization foials conducted on Lake Staring, MN.
The initial estimate for the first trial was inconsistent and reslih the localization to diverge
and move the robot out of the tag’s sensing range. During a sedahdnith a consistent initial
estimate, the target was successfully localized.

2 Previous Work

Recently, there has been significant interest in develogiggrithms for locating
transmitting radio sources using mobile robots. Song ¢8htonsidered the prob-
lem of localizing an unknown number of transient radio searasing a mobile
robot. They used an occupancy grid in a Bayesian framewouptiate the proba-
bility of a radio source being located in a given grid celleyHurther proposed a
path-planning algorithm for the robot to improve the cogesrce time for locating
all sources. In [6], Kim et al. presented a centralized nmaltiot search algorithm
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for the same problem setting, where the robots are contratlgairs to allow de-
tection of unknown transmission powers from the radio sesirc

In[9], Tekdas et al. consider the problem of finding a poirttigh signal strength
inside the sensing disc of transmitting sources. They assarprior estimate of
the source’s location is given but sensing range is unknélene, we consider the
problem of finding a good point to begin triangulation, whilstimating sensing
range and target location simultaneously.

Fink and Kumar [3] presented methods to build a radio sigimahgth map in an
unknown indoor environment and presented control laws folbifa robots to seek
the transmitting radio source. Recently, Twigg et al. [1@ji@ssed the problem of
exploration while seeking a radio source. The algorithmdsua gradient of the
RSSI by collecting samples locally. Their work involves @od environments and
areas with significant multi-path effects, and so is notdliyeapplicable to our
work. In addition, the directional sensitivity of our antenmakes it difficult to
determine and follow a gradient.

The problem of simultaneously localizing a robot and midtiransmitting
sources was considered in [4]. It was assumed that range teukxplicitly re-
covered from the transmissions, and an arbitrary robotywa#reconstructed while
simultaneously estimating the position of each radio. &raitive, offline algorithm
was proposed and evaluated. This problem is fundamentdibreht because we
cannot recover range directly, and must solve the probleimegri.e., as measure-
ments become available. Furthermore, we have direct danteo the robot’s path.
In fact, defining the robot’s path to aid the estimation peobis the what we address
in the following sections.

3 Motivation

In this section, we present the details of our system anddismuss some intuitive
methods for addressing the problem under consideration.

3.1 System

Our system consists of a wheeled rover to traverse frozesslakd locate fish ag-
gregations. We deploy a similar system during the summaegusibotic boats. Our
mobile rover is the A100 Husky by Clearpath Robotics, androbiotic boat is an
OceanScience QBoat. Both chassis are fitted with a loop matenservo motor to
rotate the antenna, a radio receiver, and a laptop comfiterobots estimate their
own pose and navigate using an Extended Kalman Filter (E&Rjéning informa-
tion from a Global Positioning System unit and a digital caisg (on the boat) or
encoders (on the wheeled rover).
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The radio tags are shown in Figure 1 (Left). Each tag is prograd with a
specific frequency in the 48-50MHz range and emits 30-50adsgper minute. We
operate on lakes which have 10-20 tagged fish and the lisegfiéncies present
in each lake is known a priori. Signals from the tags attemaata function of the
humidity, salinity of the water, ice or snow thickness, ahne tlepth of the fish it is
attached to. These factors cause variations in the rangaett tags can be detected.
Therefore we do not use the absolute signal strength to &&timmnge, and instead
use the directional nature of the antenna to estimate lgearin

The radio antenna and receiver are pictured in Figure 1 (eniaiad right), atop
both robots. The sensitivity of the antenna varies with #lative angle with the
tag. We rotate the antenna using a servo motor in 15 degnee @ter 180 degrees.
We sample the signal strength at each step and fit a smoottidurio the data to
estimate the direction with maximum RSSI. This directiotréated as the bearing
towards the target. Because of the low signal rate, obtgiainearing measurement
takes about 1-2 minutes. Empirically we have found the bgameasurements to
follow an approximately Gaussian distribution around the target bearingd ~
15°). However, bearing measurements constructed in this waambiguous, or
r-periodic. For any estimated bearingz+ ris also a valid bearing measurement
(see Figure 3(b)).

(a) A typical search path. (b) Ambiguous measurements

Fig. 3 Examples of search patterns (Figure 3(a)) and ambiguous beasasurements (Figure
3(b)). High sensor noise, ambiguity and unknown sensing range nitaéigfcult to transition
from search to localization.

In our previous trials we observed that the tags’ radio dignandetectable un-
less we are within 100-200 meters. This provides a natus&lgartitioning:Search
andLocalization[11]. The goal of the search phase is to cover the regionsdalte
that are likely to contain tagged fish and move the robot thiwisensing range of
each tag. We then switch kacalization where the goal is to obtain multiple bearing
measurements to localize the tag to a desired precisiore @narget is localized,
the robot can resume its search for other tags. During thelsg@hase, we simply
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wait for a detection of a non-zero RSSI value, which takesiigantly less time
than obtaining a full bearing measurement.

Our current localization algorithm uses an EKF to estimhtegosition of the
tag [13]. The localization subroutine takes time propardioto the area of initial
uncertainty and the distance between the initial estimadetfze robot. In simulation
and experiments this method performs well, but only if thiédhestimate of the
target is consistent and not significantly uncertain. Qlitagi an initial estimate of
the target location with bounded uncertainty is challeggas we discuss next.

3.2 Thelnitialization Problem

Before the localization algorithm can be deployed to pedgigstimate tag loca-
tions, we must initialize a prior estimate as input. We hyieflesent some intuitive
methods we have tried and discuss why they fail.

Measurement-basedAs often recommended in bearing-only tracking literature
a small number of bearing measurements can be collectedraoelgsed in a batch.
Given a set ok measurement® = {z,- - -z}, we maximize the likelihoodp(Z|x)
over target locations. In practice, limited sensing range and long measurement
time make this strategy infeasible. Also, consider Figty.3rhe two dark regions
show areas which are likely to contain the true target andameat easily determine
which hypothesis is the origin of the measuremeritsr(X). A third measurement,
taken from a large baseline could disambiguate the two. Mewea large baseline
is likely to move the robot outside the sensing range of tingeta producing no
information while paying the full cost of a bearing measueain Another solution
could be to take a fixed number of measurements around tied diétection point.
Again, the long bearing measurement time makes this an sikgestrategy which
must be repeated for each nearby tag. Further, it is not blearthese additional
measurement locations should be chosen to guarantee a stirodte of the target.

Initial hypothesis. In contrast to the above, we can initialize a hypothesisky t
ing two measurements as shown in Figure 3(b). By drawing aye/edirrounding
each measurement to represent its uncertainty, we camabtantersection repre-
senting the target hypothesis. We can fit a Gaussian disitibto this intersection
area and use as an initial estimate. This is not robust irtipeasince the intersec-
tion can be unbounded. Additionally, we have two interggctreas leading to two
initial hypothesis. As such, this method provides no gu@esabout initial estimate
uncertainty or range.

Signal-strength based We can attempt to use the signal strength to resolve the
ambiguity of each measurement. The robot could travel tdwae hypothesis and
measure the signal strength. We expect the signal streagtititease if the robot
travels towards the correct hypothesis. In practice, waddhis strategy to be sen-
sitive to sensor noise from the unknown and possibly comgpetial signal strength
patterns. We found that for small movements near the eddeecfdnsing range this
method was unreliable.
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Fig. 4 (a) While on its coverage path (curved arrow), the roboD,aletects a non-zero signal for
some frequency. (b) The initialization strategy determines the sensing ciimeX by moving
along search paths as shown uitils not detectable again. Shown is a case where three search
paths fail to uniquely identify the sensing circle. (c) An exdenpf a Four-path search.

Each of these initialization methods fails to provide a gnése of time cost, un-
certainty, or consistency of the estimate. In the next eactive describe our solution
to this problem which relies on a local search strategy.

4 Local Search

The goal of the local search is two-fold: (1) determine whetn aggregation exists
nearby and which targets are contained within the aggi@yagind (2) form good
initial estimates (mean and covariance) for each targdteéraggregation. The ini-
tialization phase begins as soon as the robot first deteats@ero RSSI from a
radio tag while on the search path (Figure 4(a)). We assuatdlth detected tay

is at the center of a sensing cir€lg of radiusr. Our objective is to establish an ini-
tial estimate o andr. In this section, we first present our local search initatian
strategy for a single target (i.¥). We bound the worst-case and average-case time
required for this strategy. We then extend this strategyieicase of an aggregation
of multiple tagged fish.

4.1 Single-Target Local Search

Note that bothX (the origin ofCy) andr are unknown. By finding three points on
the perimeter o€x we can solve folX andr. To find these points, the local search
proceeds as follows:
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1. From the point of first detectiorQj, the robot moves in a fixed direction with
respect to the global frame (e.g., North or ang)e

2. When the robot can no longer detect the tad§€iposition A in Figure 5) it
reverses direction and returns@o

The line segment traversed in these two steps is calledes @ path. To analyze
the time cost of this strategy, we establish the minimum remd$ search paths
needed to find at least three points on the bounda@xofWe can see that at least
four equally spaced search paths are necessary and suffioenFigure 4(b).

Ay

)

D = : ‘

-

Fig. 5 The robot continues along an arbitrary but fixed directiotil ilncannot detect the signal
from X (at positionA). The robot then returns 10 and repeats the same strategy along a perpen-
dicular line B). In general, the can lie in the interior of the sensing circle, hence the robsx al
searches along andD

We now establish the cost of using four search paths toXiaddr. The analysis
follows Figure 5. Let angl©AX be 6. By design, the angléOB is 7. The distance
|ABJ is 2r and segmerDA has length 2cosf while OB has length Bsin6. Assume
the robot moves with velocity. Each of these lines must be traversed twice, for a
total required time of,

4r 4 .
Tsingle = Vcos@+ Vsm9+4.,g 1)

whereg is the time taken to recognize the robot has@xftturn around, and re-enter
Cx. Note thatd is unknown and can take any value between 0 amdi2pending on
the relative orientation of the target position with regyieche first search direction.
To obtain the worst-case cost, we maximize the cost funatiidm respect tog. A
straightforward derivation shows the cost is maximum wBen 45 degrees for a
maximum cost of,

r
max Tinge= 23 [ e )

The expected search time, assuméhig uniform in the rang€0, 271 is E[Tsingid =
2L +4e.
A\
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Fig. 6 (a) The single target search fails to intersect all the sensietesim the case of an aggre-
gation. (b) An example of searching for an aggregation usingseparate search steps. The robot
first finds the boundary dEx (dashed), centered &'. Then, after moving t&@’, searches along
four paths to identify the boundaries of each sensing circle.

4.2 Multi-Target Local Search

To extend the local search strategy to multiple targets, @edra model for fish
aggregations. While common carp are relatively broadlyetised during summers,
they tend to form tight aggregations under ice-covereddakevinters [1, 2, 5, 7].
For example, while average distances between radio-tagggdduring summers
are 300-500 meters, in winters, these distances decreds® 160 meters [1]. In
some cases, entire populations of carp, usually severasémuls of fish, have been
shown to aggregate in areas that are only:2Q00 meters in size [1]. We formalize
the notion of an aggregation using the following definition.

Definition 1. Let.Z = {Xg,---, X, -+, Xn } be a set of tagged fish, be the sensing
radius ofX;, andr* = minjr;. . is called an aggregation ij, j, ||X — Xj||» < r*

Under this definition, we cannot directly use the local seatcategy for a single
target for multiple targets. Figure 6(a) illustrates anrmegke case where the four
search paths do not intersect the sensing circké pfesent in the aggregation.

We propose the following strategy: By Definition 1, for anggetx, the distance
to all other targets ta is less than*. Returning to the case of one target shown in
Figure 5, we see that four search paths can provide an estohatarget location as
the center of the estimated sensing disk. In general, sieogon’t know which fish
are contained in the aggregation, it might be necessaratalséor all frequencies.
As a practical step, we make the assumption that the tru¢idocaf the first fish
X is close to the cented’ of the estimated sensing circle. This allows us to move
to O’ and determine which fish are nearby. We can then perform anothlti-path
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Fig. 7 In general, the starting location of local search can lie amyrelon the boundary or interior
of the sensing circle. In each case, we obtain a different nunfhmoiots as shown. For all cases,
we can determine the sensing circle uniquely.

search to map the boundaries of all nearby frequencies (geeeF6(b)). We call
the resulting algorithnfour-Path.

Assuming we begin a search from the target locaXgnve can show that four
paths are sufficient to detect the boundaries of each secisahgin the aggregation.
Consider Figure 7, which illustrates the possible confiiona of the rest of the
targets with respect to the first. We have three cases:

e The targetY is aligned with the search path startingQ@it and we detect two
points ofCy. This case has a unique solutidhis at%|XA’\ alongXA.

e O isonthe boundary dy. In this case we detect three poifs A, andB’. We
can solveCy directly.

e O isinside the circleCy. We can detect four points &, ... D’, and solve the
sensing circl€Sy using least-squares fitting.

Each search path begins@t~ X. The robot moves until it cannot detect any
nearby tags. By Definition 1, this can be a maximumiiii2zany direction (traveled
twice) for a total cost of 16+ 4- €. A total of five targets are required to achieve
the worst-case cost. Adding this to the worst-case costepifitial search, plus the
maximum displacement between the poidtandO’ gives,

r 51
Tmutti = 17— + 22— + 4. €. 3
multi V+ V+ ()

4.3 Discussion

The cost shown by Equation (3) may seem large. For examplengiur system,
v is approximately 2 meters per second and, for comparis@unaer is near 100
meters. Thus the total cost is approximately 19 minutesiemtorst-case 5 targets.
While we are not concerned with the aggregation displacinimtime, this may
cause unnecessary drain on the limited operational lifb@frobot. To put this in
context, compare this to the cost of taking two bearing mrmsents to initialize
each target individually. Recall from Section 3.1 that arlmegameasurement takes
approximately 1-2 minutes. At least two measurements ayeined, resulting in
10-20 minutes for 5 targets, not counting the time to displaatween measurement
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locations. By amortizing the cost of a local search on a peget basis, it is clear
the search-based strategy will incur a lower cost to inigelarger aggregations.

Fig. 8 To extend the single target local search strategy, we needsatiteslve search paths (sep-
arated by less thafj) to intersect each sensing circle at least thrice.

To see the relative advantage of a two-phase search, cotisédeork required
by a single-phase search. That is, upon detecting a nonsigmnal strength, we
could search alonf > 4 search paths and attempt to intersect each nearby sensing
circle. The necessary number of search paths can be foundlawd. Refer to
Figure 8. In this example two targef§,andY are arranged along theaxis with
respect to the starting locatidd. Assume the first search path moves alongxhe
axis and the next search path is offset by an awogl&@hen, to intersect the circle
Cy we require 2sina = r. Solving, we geta = 30 degrees, i.eK > 12 search
paths over 360 degrees. We call the resulting algoritineve-Path. Note, unlike
the Four-Path strategy, we must sample the entire list giigacies in the lake over
each of the twelve paths because we do not know until we ahédiwhich tags
belong to the aggregation. Hence the time taken to sampézjaéncy, and the total
number of targets in the lake affect the cost of this strategy

Because the distribution of the targets both in and betwggregations plays a
large role in thexpected search time, we compare these strategies in simulations.

5 Simulations

In the analysis presented in the previous section we asstimeetime required to
sample a frequencyt)(was negligible. In practice, we may periodically stop the
robot while sampling the frequencies to avoid radio intenfiee from the electric
drives, which takes some time. Second, we assumed the sasiegeange for all
tags, when in practice it can be different for each tag. Binale evaluated the cost
toinitialize the targets in a single aggregation. In gehénare can be more than one
aggregation in the lake, each possibly containing differembers of tagged fish.
In this section, we investigate the role of the time spenaimgling the frequencies,
the effect of multiple aggregations on total cost, and tlfiecéfof different sensing
ranges on the time to initialize all targets.
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Fig. 9 Simulation comparing the time taken to initialize all 10 fish ie thke, as the number of
aggregations varies. The Four-Path strategy performs blettethe Twelve-Path. The bars indicate
the minimum and maximum times, and the trend line plots the mean tifb@ iofstances.

We conducted simulations as follows. To evaluate a varyergisg ranger; is
drawn uniformly at random betweéB0,100m for each tag. We vary the number
of aggregations from % 10 (with at least one fish each). The remaining fish are
assigned randomly. The direction in which the robot enteeglietection disk of the
first target for each aggregation is also drawn uniformlyaaidom between 0 and
2rtradians. The velocity of the robot is given\aand is assumed fixed.

We compare Twelve-Path and Four-Path strategies presertteslprevious sec-
tion. Recall that the Twelve-Path (Figure 8) strategy maalesg twelve search
paths from the point of first detection, while sampling on ¢néire list of frequen-
cies present in the lake. The Four-Path strategy (see Fegb)estimates the sens-
ing circle for first tag detected, moves to the center of thigeated circle, samples
all frequencies once to detect the list of frequencies ptasethe aggregation, and
then moves along four search paths to estimate the sensikgfdr only the subset
of tags detected in the aggregation. Both produce an egtiofahe sensing range
and position of each nearby tag.

In Figure 9, we compare the mean, min and max time taken farugixe both
strategies for 50 iterations, as a function of the aggregaizeM with total number
of fish,N = 10. The sampling time per frequencytis- 0.03 sec (we obtain similar
results for other choices of sampling time). We observe tthefour-Path strategy
takes less time, as compared to the Twelve-Path strategy.

Figure 10 shows the time taken by the Four-Path strategy \sizenof one ag-
gregation is increased (as opposed to the number of aggregat Figure 9). For
lower sampling time, we observe that the time to travel okersearch paths domi-
nates the time to sample for various frequencies. Sinceitit@nde traveled by the
robot doesn’t change significantly with increasing numiddist in the aggregation
(by Definition 1), we see that the time taken scales well.



Local-Search Strategy for Active Localization 13

Time to initialize one aggregation (t=0.03sec) Time to initialize one aggregation (t=3sec)
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(a)t =0.03 sec. (b)t =3 sec.

Fig. 10 Mean, minimum and maximum time taken as the number of fish increase®iaggre-
gation for the Four-Path strategy. For lower sampling time, ithe to travel dominates and thus
scales well for larger aggregations.

6 Experiments

We implemented our initialization strategy on the mobilesis shown in Fig-
ure 1. Three tags were deployed on Lake Gervais, MN, and thedrlocations
were recorded for comparison (see Figure 11). The robotfétgcted the tag with
frequency 48341 at the location marked START in Figure 11{lag robot then exe-
cuted the Four-Path strategy. After completing the firsspha the Four-Path strat-
egy, we fit a circle to the points where we stopped detectisgstgnal for 48341
as shown. This circle was used as the 8ncertainty ellipse of a 2D Gaussian dis-
tribution with the center of the circle used as the mean fitializing the estimate
for this tag. The robot then traveled to the center of thisleiand sampled the
list of frequencies to detect nearby tags. The robot dedesigals for frequencies
48931 and 48999 (48999 was due to radio interference andmattaal tag—the
Localization strategy received no valid measurements &wéurtled this estimate).

The robot then executed the second phase of the Four-Pathgstr where it
searched for frequencies detected at the center of thaliaitcle as shown in Fig-
ure 11(b). The corresponding hypothesis for all tags arevshelative to the true
locations. Using this initial hypothesis, the robot thee@xed the active localiza-
tion algorithm described in [13]. Figure 11(c) shows thecexion of this localiza-
tion algorithm, the measurement locations selected fdn &g (triangles), and the
bearing measured (black lines).

The final estimates for the two actual tags in the aggregaiitan five measure-
ments (48341 and 48931) are shown using tlee\Bicertainty ellipse. Figure 11(d)
shows the GPS location of the tags along with the initial anal ®stimates. The fi-
nal covariance for 48341 had eigenvalues 5@md 168m (corresponding to an er-
ror ellipse with radii 7m and 12m), starting from an initiav@ariance with eigenval-
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(c) Localization Output (see [13]) (d) Final Estimates vs True

Fig. 11 A successful experiment demonstrating the local search stratedgeaization steps.

ues 1380rf. The final covariance for 48931 had eigenvalues 48nd 127m (radii
7m and 11m), starting from an initial covariance with eigenes 1758rh The final
error for 48341 and 48931 were 27m and 23m respectively.

7 Conclusions

We are working toward the goal of localizing multiple tagét a known envi-
ronment in bounded time. The complicated interplay of tadigribution, sensing
range, measurement noise, and ambiguous measurement makks each phase
independently interesting. Here we presented a stratemytimlize consistent hy-
potheses for multiple targets in an aggregation. In ourréuvork, we plan to extend
the our system to multiple robots and incorporate fish mighitiodels. To extend
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this algorithm to multiple robots, we must account for conmication constraints
between the robots and develop allocation algorithms whicrantee the work is
distributed evenly. For mobile targets, we must both dgvetotion models for fish
and develop new search and localization algorithms basetias® models. One
possible approach is to model the fish as adversarial-partraingoing work.
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