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Abstract In this paper, we study a problem encountered during our ongoing efforts
to locate radio-tagged fish aggregations with robots. The problem lies at the intersec-
tion of search-based methods whose objective is to detect a target, and active target
localization methods whose objective is to precisely localize a target given its initial
estimate. Real-world sensing constraints such as limited and unknown range, large
measurement time, and ambiguity in bearing measurements make it imperative to
have an intermediate initialization phase to transition from search to localization. We
present a local search strategy aimed at reliably initializing an estimate for a single
target based on observations from field experiments. We thenextend this strategy to
initialize multiple targets, exploiting the proximity of nearby aggregated tagged fish
to decrease the cost of initialization per target. We evaluate the performance of our
algorithm through simulations and demonstrate its utilitythrough a field experiment
where the robot successfully detects, initializes and thenlocalizes nearby targets.

1 Introduction

We are developing a robotic system (Figure 1) and algorithms[10, 11] to enable
a mobile sensor network to monitor the common carp (Cyprinuscarpio), an in-
vasive fish. The common carp is an ecologically damaging freshwater fish found in
many regions around the world [14]. Biologists are interested in developing efficient
methods for controlling carp populations. To this end, theycatch a small sample of
the population and implant each fish with radio transmitters(tags). These tagged
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Fig. 1 Our robotic system consists of radio tags, a radio antenna and receiver mounted on au-
tonomous boat in summer and wheeled rover in winter (to operate onfrozen lakes).

fish are reintroduced to the lakes and periodically tracked using radio receivers over
the course of a year. When multiple tagged fish seem to aggregate, it is assumed a
larger population is nearby. When these large aggregations of carp are found, typ-
ically during the winter, they can be removed by netting. This provides a safe and
environmentally-friendly method for controlling the population of carp.

The radio tags (Figure 1) are small, low duty-cycle transmitters which are im-
planted under the skin of the fish. Each tag emits a pulsed signal on a dedicated
frequency approximately once per second. A human operator carries a loop an-
tenna and a receiver which converts the signal to a received signal strength indicator
(RSSI). By monitoring the RSSI and rotating a directionallysensitive antenna, the
operator can discern a bearing to the radio tag. Typically a human operator will take
2-3 bearing measurements to estimate the location of one tag. However, this man-
ual tracking approach is tedious, time consuming and possibly inaccurate at times.
Therefore, we believe that this problem is a good application for robotics.

Our overall objective in this application is as follows: Given a list ofN fre-
quencies (one per tagged fish), each of which can be detected by the robot at a
unique rangeri, localize each target to a desired accuracy in bounded time.In Sec-
tion 3.1, we discuss our previous work where we partition this problem in two sep-
arate phases: (i)Search phase where the objective is to find a location for the robot
within the sensing range of each target, and (ii)Localization phase where the robot
uses bearing measurements to reduce the uncertainty in the target’s estimate.

During field tests of this system, we found that the localization routine was sen-
sitive to the accuracy of the initial estimate. Constructing a consistent, reasonably
certain prior estimate in limited time has proven to be a difficult task. The problem
becomes further challenging because the sensing ranges of individual tags can vary
based on the depth of the fish, the age of the tag, and other environmental factors.
For example, Figure 2 shows a field trial where the robot couldnot complete the
triangulation due to an incorrect initialization. The target was initialized with a 2D
Gaussian distribution centered at the location where the robot first moved into the
sensing range of the tag, with a variance based on empirical estimates of the sensing
range. However, the variance was set too low and as such the initial estimate was not
consistent. During triangulation, the robot moved to a location which fell outside the
sensing range of the target, and the final estimate was wrong.The robot successfully
triangulated the same tag in another run where the initial estimate (not shown for
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clarity) was consistent. This indicates the importance of starting with a good initial
estimate. Therefore, we present a local search strategy which, after detecting a target
during the search phase,

1. Initializes a consistent estimate of the target location,
2. Maps a region from which bearing measurements are likely to succeed,
3. Exploits clustering behavior of the fish to locate nearby targets efficiently.

After presenting the details of the search strategy and its analysis in Section 4, we
evaluate the strategy through simulations (Section 5), andpresent results from a field
experiment (Section 6). The field trial demonstrates that our proposed initialization
strategy is effective, and promising for large-scale future experiments. We believe
our proposed approach of search, initialization, and localization should be appli-
cable for other applications where one or more robots are tasked with accurately
locating one or more targets in bounded time.
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Fig. 2 Failed triangulation due to incorrect initialization for trials conducted on Lake Staring, MN.
The initial estimate for the first trial was inconsistent and resulted in the localization to diverge
and move the robot out of the tag’s sensing range. During a second trial, with a consistent initial
estimate, the target was successfully localized.

2 Previous Work

Recently, there has been significant interest in developingalgorithms for locating
transmitting radio sources using mobile robots. Song et al.[8] considered the prob-
lem of localizing an unknown number of transient radio sources using a mobile
robot. They used an occupancy grid in a Bayesian framework toupdate the proba-
bility of a radio source being located in a given grid cell. They further proposed a
path-planning algorithm for the robot to improve the convergence time for locating
all sources. In [6], Kim et al. presented a centralized multi-robot search algorithm
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for the same problem setting, where the robots are controlled in pairs to allow de-
tection of unknown transmission powers from the radio sources.

In [9], Tekdas et al. consider the problem of finding a point ofhigh signal strength
inside the sensing disc of transmitting sources. They assume a prior estimate of
the source’s location is given but sensing range is unknown.Here, we consider the
problem of finding a good point to begin triangulation, whileestimating sensing
range and target location simultaneously.

Fink and Kumar [3] presented methods to build a radio signal strength map in an
unknown indoor environment and presented control laws for mobile robots to seek
the transmitting radio source. Recently, Twigg et al. [12] addressed the problem of
exploration while seeking a radio source. The algorithm builds a gradient of the
RSSI by collecting samples locally. Their work involves indoor environments and
areas with significant multi-path effects, and so is not directly applicable to our
work. In addition, the directional sensitivity of our antenna makes it difficult to
determine and follow a gradient.

The problem of simultaneously localizing a robot and multiple transmitting
sources was considered in [4]. It was assumed that range could be explicitly re-
covered from the transmissions, and an arbitrary robot pathwas reconstructed while
simultaneously estimating the position of each radio. An iterative, offline algorithm
was proposed and evaluated. This problem is fundamentally different because we
cannot recover range directly, and must solve the problem online, i.e., as measure-
ments become available. Furthermore, we have direct control over the robot’s path.
In fact, defining the robot’s path to aid the estimation problem is the what we address
in the following sections.

3 Motivation

In this section, we present the details of our system and thendiscuss some intuitive
methods for addressing the problem under consideration.

3.1 System

Our system consists of a wheeled rover to traverse frozen lakes and locate fish ag-
gregations. We deploy a similar system during the summer using robotic boats. Our
mobile rover is the A100 Husky by Clearpath Robotics, and ourrobotic boat is an
OceanScience QBoat. Both chassis are fitted with a loop antenna, a servo motor to
rotate the antenna, a radio receiver, and a laptop computer.The robots estimate their
own pose and navigate using an Extended Kalman Filter (EKF) combining informa-
tion from a Global Positioning System unit and a digital compass (on the boat) or
encoders (on the wheeled rover).
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The radio tags are shown in Figure 1 (Left). Each tag is programmed with a
specific frequency in the 48-50MHz range and emits 30-50 signals per minute. We
operate on lakes which have 10-20 tagged fish and the list of frequencies present
in each lake is known a priori. Signals from the tags attenuate as a function of the
humidity, salinity of the water, ice or snow thickness, and the depth of the fish it is
attached to. These factors cause variations in the range at which tags can be detected.
Therefore we do not use the absolute signal strength to estimate range, and instead
use the directional nature of the antenna to estimate bearing.

The radio antenna and receiver are pictured in Figure 1 (middle and right), atop
both robots. The sensitivity of the antenna varies with the relative angle with the
tag. We rotate the antenna using a servo motor in 15 degree steps over 180 degrees.
We sample the signal strength at each step and fit a smooth function to the data to
estimate the direction with maximum RSSI. This direction istreated as the bearing
towards the target. Because of the low signal rate, obtaining a bearing measurement
takes about 1-2 minutes. Empirically we have found the bearing measurements to
follow an approximately Gaussian distribution around the true target bearing (σ ≈
15◦). However, bearing measurements constructed in this way are ambiguous, or
π-periodic. For any estimated bearingz, z+π is also a valid bearing measurement
(see Figure 3(b)).

(a) A typical search path. (b) Ambiguous measurements

Fig. 3 Examples of search patterns (Figure 3(a)) and ambiguous bearing measurements (Figure
3(b)). High sensor noise, ambiguity and unknown sensing range makesit difficult to transition
from search to localization.

In our previous trials we observed that the tags’ radio signal is undetectable un-
less we are within 100-200 meters. This provides a natural task partitioning:Search
andLocalization [11]. The goal of the search phase is to cover the regions of the lake
that are likely to contain tagged fish and move the robot to within sensing range of
each tag. We then switch toLocalization where the goal is to obtain multiple bearing
measurements to localize the tag to a desired precision. Once a target is localized,
the robot can resume its search for other tags. During the search phase, we simply
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wait for a detection of a non-zero RSSI value, which takes significantly less time
than obtaining a full bearing measurement.

Our current localization algorithm uses an EKF to estimate the position of the
tag [13]. The localization subroutine takes time proportional to the area of initial
uncertainty and the distance between the initial estimate and the robot. In simulation
and experiments this method performs well, but only if the initial estimate of the
target is consistent and not significantly uncertain. Obtaining an initial estimate of
the target location with bounded uncertainty is challenging, as we discuss next.

3.2 The Initialization Problem

Before the localization algorithm can be deployed to precisely estimate tag loca-
tions, we must initialize a prior estimate as input. We briefly present some intuitive
methods we have tried and discuss why they fail.

Measurement-based. As often recommended in bearing-only tracking literature,
a small number of bearing measurements can be collected and processed in a batch.
Given a set ofk measurementsZ = {z1, · · ·zk}, we maximize the likelihood,p(Z|x)
over target locationsx. In practice, limited sensing range and long measurement
time make this strategy infeasible. Also, consider Figure 3(b). The two dark regions
show areas which are likely to contain the true target and we cannot easily determine
which hypothesis is the origin of the measurements ( ˆx or x̂′). A third measurement,
taken from a large baseline could disambiguate the two. However, a large baseline
is likely to move the robot outside the sensing range of the target, producing no
information while paying the full cost of a bearing measurement. Another solution
could be to take a fixed number of measurements around the initial detection point.
Again, the long bearing measurement time makes this an expensive strategy which
must be repeated for each nearby tag. Further, it is not clearhow these additional
measurement locations should be chosen to guarantee a good estimate of the target.

Initial hypothesis. In contrast to the above, we can initialize a hypothesis by tak-
ing two measurements as shown in Figure 3(b). By drawing a wedge surrounding
each measurement to represent its uncertainty, we can obtain an intersection repre-
senting the target hypothesis. We can fit a Gaussian distribution to this intersection
area and use as an initial estimate. This is not robust in practice, since the intersec-
tion can be unbounded. Additionally, we have two intersection areas leading to two
initial hypothesis. As such, this method provides no guarantees about initial estimate
uncertainty or range.

Signal-strength based. We can attempt to use the signal strength to resolve the
ambiguity of each measurement. The robot could travel toward one hypothesis and
measure the signal strength. We expect the signal strength to increase if the robot
travels towards the correct hypothesis. In practice, we found this strategy to be sen-
sitive to sensor noise from the unknown and possibly complexspatial signal strength
patterns. We found that for small movements near the edge of the sensing range this
method was unreliable.
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Fig. 4 (a) While on its coverage path (curved arrow), the robot, atO, detects a non-zero signal for
some frequencyX . (b) The initialization strategy determines the sensing circlefor X by moving
along search paths as shown untilX is not detectable again. Shown is a case where three search
paths fail to uniquely identify the sensing circle. (c) An example of a Four-path search.

Each of these initialization methods fails to provide a guarantee of time cost, un-
certainty, or consistency of the estimate. In the next section, we describe our solution
to this problem which relies on a local search strategy.

4 Local Search

The goal of the local search is two-fold: (1) determine whether an aggregation exists
nearby and which targets are contained within the aggregation, and (2) form good
initial estimates (mean and covariance) for each target in the aggregation. The ini-
tialization phase begins as soon as the robot first detects a non-zero RSSI from a
radio tag while on the search path (Figure 4(a)). We assume that the detected tagX
is at the center of a sensing circleCX of radiusr. Our objective is to establish an ini-
tial estimate ofX andr. In this section, we first present our local search initialization
strategy for a single target (i.e.X). We bound the worst-case and average-case time
required for this strategy. We then extend this strategy forthe case of an aggregation
of multiple tagged fish.

4.1 Single-Target Local Search

Note that bothX (the origin ofCx) andr are unknown. By finding three points on
the perimeter ofCX we can solve forX andr. To find these points, the local search
proceeds as follows:
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1. From the point of first detection (O), the robot moves in a fixed direction with
respect to the global frame (e.g., North or angleα).

2. When the robot can no longer detect the targetX (position A in Figure 5) it
reverses direction and returns toO.

The line segment traversed in these two steps is called as asearch path. To analyze
the time cost of this strategy, we establish the minimum number of search paths
needed to find at least three points on the boundary ofCX . We can see that at least
four equally spaced search paths are necessary and sufficient from Figure 4(b).

X

A

B

C

D
O

r

r

Fig. 5 The robot continues along an arbitrary but fixed direction until it cannot detect the signal
from X (at positionA). The robot then returns toO and repeats the same strategy along a perpen-
dicular line (B). In general, theO can lie in the interior of the sensing circle, hence the robot also
searches alongC andD

We now establish the cost of using four search paths to findX andr. The analysis
follows Figure 5. Let angleOAX beθ . By design, the angleAOB is π

2 . The distance
|AB| is 2r and segmentOA has length 2r cosθ while OB has length 2r sinθ . Assume
the robot moves with velocityv. Each of these lines must be traversed twice, for a
total required time of,

Tsingle=
4r
v

cosθ +
4r
v

sinθ +4· ε (1)

whereε is the time taken to recognize the robot has leftCX , turn around, and re-enter
CX . Note thatθ is unknown and can take any value between 0 and 2π, depending on
the relative orientation of the target position with respect to the first search direction.
To obtain the worst-case cost, we maximize the cost functionwith respect toθ . A
straightforward derivation shows the cost is maximum whenθ = 45 degrees for a
maximum cost of,

max
θ

Tsingle= 2
5
2

r
v
+4· ε (2)

The expected search time, assumingθ is uniform in the range[0,2π] is E[Tsingle] =
2r

v +4ε.
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Fig. 6 (a) The single target search fails to intersect all the sensing circles in the case of an aggre-
gation. (b) An example of searching for an aggregation using twoseparate search steps. The robot
first finds the boundary ofCX (dashed), centered atO′. Then, after moving toO′, searches along
four paths to identify the boundaries of each sensing circle.

4.2 Multi-Target Local Search

To extend the local search strategy to multiple targets, we need a model for fish
aggregations. While common carp are relatively broadly dispersed during summers,
they tend to form tight aggregations under ice-covered lakes in winters [1, 2, 5, 7].
For example, while average distances between radio-taggedcarp during summers
are 300-500 meters, in winters, these distances decrease to50-100 meters [1]. In
some cases, entire populations of carp, usually several thousands of fish, have been
shown to aggregate in areas that are only 100×100 meters in size [1]. We formalize
the notion of an aggregation using the following definition.

Definition 1. Let L = {X1, · · · ,Xi, · · · ,XN} be a set of tagged fish,ri be the sensing
radius ofXi, andr⋆ = mini ri. L is called an aggregation if,∀i, j, ||Xi −X j||2 < r⋆

Under this definition, we cannot directly use the local search strategy for a single
target for multiple targets. Figure 6(a) illustrates an example case where the four
search paths do not intersect the sensing circle ofY present in the aggregation.

We propose the following strategy: By Definition 1, for any targetx, the distance
to all other targets tox is less thanr⋆. Returning to the case of one target shown in
Figure 5, we see that four search paths can provide an estimate of a target location as
the center of the estimated sensing disk. In general, since we don’t know which fish
are contained in the aggregation, it might be necessary to search for all frequencies.
As a practical step, we make the assumption that the true location of the first fish
X is close to the centerO′ of the estimated sensing circle. This allows us to move
to O′ and determine which fish are nearby. We can then perform another multi-path
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Fig. 7 In general, the starting location of local search can lie anywhere on the boundary or interior
of the sensing circle. In each case, we obtain a different number of points as shown. For all cases,
we can determine the sensing circle uniquely.

search to map the boundaries of all nearby frequencies (see Figure 6(b)). We call
the resulting algorithmFour-Path.

Assuming we begin a search from the target locationX , we can show that four
paths are sufficient to detect the boundaries of each sensingcircle in the aggregation.
Consider Figure 7, which illustrates the possible configurations of the rest of the
targets with respect to the first. We have three cases:

• The targetY is aligned with the search path starting atO′, and we detect two
points ofCY . This case has a unique solution:Y is at 1

2|XA′| alongXA′.
• O′ is on the boundary ofCY . In this case we detect three pointsO′, A′, andB′. We

can solveCY directly.
• O′ is inside the circleCY . We can detect four points atA′, . . . ,D′, and solve the

sensing circleCY using least-squares fitting.

Each search path begins atO′ ≈ X . The robot moves until it cannot detect any
nearby tags. By Definition 1, this can be a maximum of 2r in any direction (traveled
twice) for a total cost of 16rv +4 · ε. A total of five targets are required to achieve
the worst-case cost. Adding this to the worst-case cost of the initial search, plus the
maximum displacement between the pointsO andO′ gives,

Tmulti = 17
r
v
+2

5
2

r
v
+4· ε . (3)

4.3 Discussion

The cost shown by Equation (3) may seem large. For example, given our system,
v is approximately 2 meters per second and, for comparison, assumer is near 100
meters. Thus the total cost is approximately 19 minutes for the worst-case 5 targets.
While we are not concerned with the aggregation displacing inthis time, this may
cause unnecessary drain on the limited operational life of the robot. To put this in
context, compare this to the cost of taking two bearing measurements to initialize
each target individually. Recall from Section 3.1 that a bearing measurement takes
approximately 1-2 minutes. At least two measurements are required, resulting in
10-20 minutes for 5 targets, not counting the time to displace between measurement
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locations. By amortizing the cost of a local search on a per-target basis, it is clear
the search-based strategy will incur a lower cost to initialize larger aggregations.

XO
r r

r

Fig. 8 To extend the single target local search strategy, we need at least twelve search paths (sep-
arated by less thanπ6 ) to intersect each sensing circle at least thrice.

To see the relative advantage of a two-phase search, consider the work required
by a single-phase search. That is, upon detecting a non-zerosignal strength, we
could search alongK > 4 search paths and attempt to intersect each nearby sensing
circle. The necessary number of search paths can be found as follows. Refer to
Figure 8. In this example two targets,X andY are arranged along thex axis with
respect to the starting locationO. Assume the first search path moves along thex
axis and the next search path is offset by an angleα. Then, to intersect the circle
CY we require 2r sinα = r. Solving, we getα = 30 degrees, i.e.,K ≥ 12 search
paths over 360 degrees. We call the resulting algorithmTwelve-Path. Note, unlike
the Four-Path strategy, we must sample the entire list of frequencies in the lake over
each of the twelve paths because we do not know until we are finished which tags
belong to the aggregation. Hence the time taken to sample a frequency, and the total
number of targets in the lake affect the cost of this strategy.

Because the distribution of the targets both in and between aggregations plays a
large role in theexpected search time, we compare these strategies in simulations.

5 Simulations

In the analysis presented in the previous section we assumedthe time required to
sample a frequency (t) was negligible. In practice, we may periodically stop the
robot while sampling the frequencies to avoid radio interference from the electric
drives, which takes some time. Second, we assumed the same sensing ranger for all
tags, when in practice it can be different for each tag. Finally, we evaluated the cost
to initialize the targets in a single aggregation. In general, there can be more than one
aggregation in the lake, each possibly containing different numbers of tagged fish.
In this section, we investigate the role of the time spent in sampling the frequencies,
the effect of multiple aggregations on total cost, and the effect of different sensing
ranges on the time to initialize all targets.
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Fig. 9 Simulation comparing the time taken to initialize all 10 fish in the lake, as the number of
aggregations varies. The Four-Path strategy performs better than the Twelve-Path. The bars indicate
the minimum and maximum times, and the trend line plots the mean time of50 instances.

We conducted simulations as follows. To evaluate a varying sensing range,r is
drawn uniformly at random between[50,100]m for each tag. We vary the number
of aggregations from 1− 10 (with at least one fish each). The remaining fish are
assigned randomly. The direction in which the robot enters the detection disk of the
first target for each aggregation is also drawn uniformly at random between 0 and
2π radians. The velocity of the robot is given asv and is assumed fixed.

We compare Twelve-Path and Four-Path strategies presentedin the previous sec-
tion. Recall that the Twelve-Path (Figure 8) strategy movesalong twelve search
paths from the point of first detection, while sampling on theentire list of frequen-
cies present in the lake. The Four-Path strategy (see Figure6(b)) estimates the sens-
ing circle for first tag detected, moves to the center of this estimated circle, samples
all frequencies once to detect the list of frequencies present in the aggregation, and
then moves along four search paths to estimate the sensing disks for only the subset
of tags detected in the aggregation. Both produce an estimate of the sensing range
and position of each nearby tag.

In Figure 9, we compare the mean, min and max time taken for executing both
strategies for 50 iterations, as a function of the aggregation sizeM with total number
of fish,N = 10. The sampling time per frequency ist = 0.03 sec (we obtain similar
results for other choices of sampling time). We observe thatthe Four-Path strategy
takes less time, as compared to the Twelve-Path strategy.

Figure 10 shows the time taken by the Four-Path strategy whensize of one ag-
gregation is increased (as opposed to the number of aggregations in Figure 9). For
lower sampling time, we observe that the time to travel over the search paths domi-
nates the time to sample for various frequencies. Since the distance traveled by the
robot doesn’t change significantly with increasing number of fish in the aggregation
(by Definition 1), we see that the time taken scales well.
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Fig. 10 Mean, minimum and maximum time taken as the number of fish increases in one aggre-
gation for the Four-Path strategy. For lower sampling time, the time to travel dominates and thus
scales well for larger aggregations.

6 Experiments

We implemented our initialization strategy on the mobile chassis shown in Fig-
ure 1. Three tags were deployed on Lake Gervais, MN, and theirtrue locations
were recorded for comparison (see Figure 11). The robot firstdetected the tag with
frequency 48341 at the location marked START in Figure 11(a). The robot then exe-
cuted the Four-Path strategy. After completing the first phase of the Four-Path strat-
egy, we fit a circle to the points where we stopped detecting the signal for 48341
as shown. This circle was used as the 3-σ uncertainty ellipse of a 2D Gaussian dis-
tribution with the center of the circle used as the mean for initializing the estimate
for this tag. The robot then traveled to the center of this circle and sampled the
list of frequencies to detect nearby tags. The robot detected signals for frequencies
48931 and 48999 (48999 was due to radio interference and not an actual tag–the
Localization strategy received no valid measurements and discarded this estimate).

The robot then executed the second phase of the Four-Path strategy, where it
searched for frequencies detected at the center of the initial circle as shown in Fig-
ure 11(b). The corresponding hypothesis for all tags are shown relative to the true
locations. Using this initial hypothesis, the robot then executed the active localiza-
tion algorithm described in [13]. Figure 11(c) shows the execution of this localiza-
tion algorithm, the measurement locations selected for each tag (triangles), and the
bearing measured (black lines).

The final estimates for the two actual tags in the aggregationafter five measure-
ments (48341 and 48931) are shown using the 3-σ uncertainty ellipse. Figure 11(d)
shows the GPS location of the tags along with the initial and final estimates. The fi-
nal covariance for 48341 had eigenvalues 56m2 and 168m2 (corresponding to an er-
ror ellipse with radii 7m and 12m), starting from an initial covariance with eigenval-
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Fig. 11 A successful experiment demonstrating the local search strategy andlocalization steps.

ues 1380m2. The final covariance for 48931 had eigenvalues 49m2 and 127m2 (radii
7m and 11m), starting from an initial covariance with eigenvalues 1758m2. The final
error for 48341 and 48931 were 27m and 23m respectively.

7 Conclusions

We are working toward the goal of localizing multiple targets in a known envi-
ronment in bounded time. The complicated interplay of target distribution, sensing
range, measurement noise, and ambiguous measurement modelmakes each phase
independently interesting. Here we presented a strategy toinitialize consistent hy-
potheses for multiple targets in an aggregation. In our future work, we plan to extend
the our system to multiple robots and incorporate fish mobility models. To extend
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this algorithm to multiple robots, we must account for communication constraints
between the robots and develop allocation algorithms whichguarantee the work is
distributed evenly. For mobile targets, we must both develop motion models for fish
and develop new search and localization algorithms based onthese models. One
possible approach is to model the fish as adversarial–part ofour ongoing work.
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