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Abstract—We study the problem of actively locating a static target
using mobile robots equipped with bearing sensors. The goal is to reduce

the uncertainty in the target’s location to a value below a given threshold
in minimum time. Our cost formulation explicitly models time spent
in traveling as well as taking measurements. In addition, we consider
distance-based communication constraints between the robots.

We provide the following theoretical results. First, we study the
properties of an optimal offline strategy for one or more robots with

access to the target’s true location. We derive the optimal offline algorithm
and bound its cost when considering a single robot or an even number
of robots. In other cases, we provide a close approximation.

Second, we provide a general method of converting the offline
algorithm into an online, adaptive algorithm (that does not have access to
the target’s true location) while preserving near optimality. Using these

two results, we present an online strategy proven to locate the target
up to a desired uncertainty level at near-optimal cost. In addition to
theoretical analysis, we validate the algorithm in simulations and multiple
field experiments performed using autonomous surface vehicles carrying

radio antennas to localize radio tags.

I. INTRODUCTION

Systems of mobile networked sensors have already had a signifi-

cant impact on environmental monitoring applications by automating

tedious and potentially dangerous sensing tasks. One application area

of interest monitoring radio-tagged invasive fish [1], [2]. We have

been developing a system of of Autonomous Surface Vehicles (ASVs)

which carry radio antennas that detect radio tags attached to the

fish (Figure 1). The system is intended to provide data on long-

term motions of invasive fish and search large areas for stationary

fish aggregations. The duration of such tasks forces us to consider

the trade-off between system life and time spent to localize each

radio tag. Our goal is to design algorithms that actively choose

measurement locations which provide good information about each

target, but do not produce an overly time-consuming trajectory.

Previously, we studied the problem of designing active localization

strategies for a single robot with a sensor capable of measuring bear-

ings of the radio tags [3]. Extending this to the case of multiple robots

is not straightforward, since two or more robots must synchronize

their estimates of the target location by communicating with each

other. Furthermore, the communication range of the robots is limited

in practice, and an optimal algorithm must include time spent while

the robots meet to establish communication. Therefore, we study the

problem of active localization for mobile robots subject to distance-

based communication constraints.

In this paper, we provide three main results. First, we extend the

existing body of work which analyzes the offline case: planning

measurements with respect to a known target location. The optimal

algorithm allows a direct comparison of system improvements (in-

creased velocity, decreased measurement time, increased numbers of

robots, or improved sensing), and the effect on the mission objectives

such as time-to-localize. We present optimal offline algorithms and

bounds on offline costs for any number of collaborating mobile

bearing sensors in Section IV.
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Fig. 1. The robotic systems used in field experiments. The 2-meter long
boats were designed to track invasive fish autonomously. Each one is equipped
with wireless communications, directional antenna used as bearing sensors, a
navigation suite, and computing hardware. Our algorithm was implemented
on this system and was shown to localize targets with small uncertainty.

Second, we extend the offline-optimal algorithm to include com-

munication constraints (Section IV-C). While the optimal strategy

must include at least one communication exchange to gather all the

robots’ measurements, we show the optimal strategy might sometimes

break communication to take better measurements. Thus, enforcing

persistent communication in our setting is potentially suboptimal

and our algorithm allows the robots to break communication when

necessary. As a result, it also includes a rendezvous component.

Third, we address the more realistic case: when only a prior

estimate of the true target location is known. To solve this online

problem, we plan measurements to minimize the worst-case cost,

even though the prior estimate may be uncertain or even misleading.

We present a general method of adapting any offline measurement

strategy for use in an online setting. In doing so, the cost is shown to

be at most a logarithmic factor more than that of the offline optimal

algorithm, as shown in Section V.

Our final contribution involves field experiments: We have imple-

mented and tested the online algorithms on the robot system shown

in Figure 1. We present field deployments in which two networked

robots successfully locate a radio transmitter accurately and without

requiring significant travel time. The field experiments are presented

in Section VI-B.

II. PROBLEM FORMULATION

In this section we present the notation used and formalize the

problem studied in this paper. Let the true target location be denoted

by x⋆. Each robot can take bearing measurements of the target

location. Each measurement takes a fixed amount of time tm, and

is corrupted by zero-mean Gaussian noise with variance σ2. Sensor

locations are given as su,i for robot u and measurement i. When

the time index is clear from context, we will simply specify su.

Likewise si is used for time i when considering only a single robot’s

trajectory. The full sequence of Nu measurements for robot u is

Su = {su,1, · · · , su,N}. S is the union of all measurements taken

by all robots, and N = |S| is the total number of measurements taken

among all robots. We use the notation d(a, b) to be the Euclidean

distance between points a and b. Without loss of generality, we

assume that traveling between locations a and b takes d(a, b) units

of time and is proportional to the Euclidean distance between the

points.

For any robot u, the time required to travel to each point where the

robot takes a measurement plus the measurement cost (for example,



in seconds) is

C(Su) = tm ·Nu + len(Su) (1)

where len(Su) =

Nu
∑

i=1

d(su,i, su,i−1).

The uncertainty in the target’s estimate is measured by the covariance

matrix of its Probability Density Function (PDF), Σi. The covariance

matrix will depend on the type of estimator used. However, the

Cramer Rao Lower Bound (c.f. Chapter 2.7 in [4]) establishes a lower

bound on the covariance of any unbiased estimator as the inverse of

the Fisher Information Matrix (FIM), i.e., the ordered eigenvalues of

Σ are no smaller than the ordered eigenvalues of F
−1. The design

of estimators with output matching the CRLB is separate from this

work.

The FIM is defined with respect to the true target location (x⋆),

and measurement locations given by S. Hence, the inverse of the

FIM represents the uncertainty in the target’s estimate when deriving

the optimal offline trajectories in the following sections.

Our goal is to minimize the maximum diameter of the uncertainty

ellipse, i.e., the maximum eigenvalue of F−1, denoted by λ̄F−1. Since

F is the inverse of the uncertainty, and the eigenvalues of a matrix

inverse are the inverse of the matrix eigenvalues, our information

constraint is given by the minimum eigenvalue,

λF(S, x⋆) ≥ λd (2)

For brevity, λF(S) is used whenever x⋆ does not change. Here λd

defines the requested precision (information) in the final estimate.

For example, in our application, it is desirable to obtain estimates

accurate to 5 meter resolution (
√
λ̄Σ = 5m), so λd is equal to 1/25

during field experiments. Our goal is to localize a static target as

quickly as possible using mobile bearing sensors which may have

communication constraints. The problem can be stated as follows.

Problem 1 (Active Target Localization). Given n mobile robots, find

a sequence (Su) of measurement locations (su,i for i = 1 to Nu) for

each robot u, such that the maximum cost,

max
u

Cu = Nutm +

Nu
∑

i=1

d(si,u, si−1,u) (3)

is minimized. Furthermore, the measurement locations must satisfy,

λF(S, x⋆) ≥ λd (4)

where F(S, x⋆) is the Fisher Information Matrix resulting from all

measurement locations S, evaluated with respect to the true target

location x⋆, and λA is the minimum eigenvalue of the matrix A.

Beginning in Section IV-C, the distance-based communication

constraint (which states that the robots may not communicate unless

they are within a given distance rc) will be introduced. If the robots

do not communicate the results of their measurements, they cannot

form a joint estimate of the target’s position. Thus, the uncertainty

in target estimate is a function of the measurements gathered up to

the last time the robots met. For example, in the offline case (as in

Section IV), the fact that the true target location (x⋆) is known makes

Equation (4) dependent only on the relative locations of the sensors

with respect to x⋆. Then, the robots do not need to meet more than

once, since exchanging measurements will not affect x⋆. However,

in the online case (as in Section V), x⋆ is unknown. Therefore,

the robots must either take enough measurements to ensure that for

any x⋆, Equation (4) is satisfied, or periodically meet, update their

estimate of x⋆, and adjust the measurement sequence to make use of

the shared information.

III. RELATED WORK

There has been significant interest in designing estimators to

achieve the Cramer Rao Lower Bound (CRLB). We focus on the

complementary problem of choosing measurement points, thus our

results apply to any estimator that approaches the CRLB in the limit.

Most active-tracking algorithms can be classified as locally op-

timal, gradient-ascent (e.g., work by Grocholsky et al. [5], [6] or

Zhou and Roumeliotis [7]). Another suboptimal approach is track

enumeration (e.g., Frew et al. [8], [9]). Zhou and Roumeliotis [7]

considered constraints on the target motion to find a gradient ascent

to minimize the trace of the target’s covariance matrix. The work

in [9] searches over the action space for a feasible sensor trajectory.

These works do not bound the cost of the resulting trajectories.

A novel aspect of our formulation is that we optimize the trajectory

of the robots with respect to the measurement cost and the distance

traveled. Incorporating measurement time is relevant in a variety

of real-world problem settings. For example, we previously used

sensors to sample radio signal strength over one to two minutes to

discern the bearing toward the target [2], [10], [11]. Another possible

measurement cost is local maneuvers during a measurement. For

example, Derenick et al. [12] used rotations in the robot chassis

to construct bearing measurements to targets. Similarly, Forney et

al. [13] use an S-shaped maneuver to resolve the direction to a target

when using a hydrophone array. These maneuvers do not significantly

change the robot-target configuration, but cost time and energy, a cost

ignored by traditional active-localization literature.

A possible approach to the active-tracking problem is to formulate

it as finding the optimal policy of a Markov Decision Process [14].

When the true target location is unknown and measurements are

imprecise, the problem becomes finding the optimal policy for a

Partially Observable Markov Decision Process (POMDP) [14], [15].

In our case, the state space would be given by the locations of their

robots and their individual belief of the target space. The optimal

strategy would choose measurement locations and a way for robots

to exchange beliefs. Solving POMDPs in general is intractable, and

we are not aware of dedicated methods to solve for the POMDPs

which would arise from our setup.

The study of optimal, offline, active-localization algorithms using

the Fisher Information Matrix dates to Hammel et al., [16], and has

seen more recent results by Logothetis et al. [17], Bishop et al. [18],

[19], and Martinez and Bullo [20]. Of these, only [16] considered

time-constrained trajectories. However, the results were for a single

robot with a continuous sensor, and are not directly applicable to the

setup considered in the present work.

We also study the problem of including communication constraints

among the robots. The problem of estimating the target state despite

loss of connectivity has recently gained attention. Hollinger and

Singh [21] considered the problem of re-establishing an estimation

task after losing connectivity. In the same vein, Makarenko and

Durrant-Whyte [22] studied estimation when connectivity was either

enforced, or intermittent. This was similar to Leung et al. [23]

who showed how to maintain a consistent estimate of a multi-

robot system while relying on future reconnection. Spletzer and

Taylor [24] studied the problem of assigning robots to targets while

also enforcing network connectivity. In these works, the optimality of

maintaining connectivity was assumed, but we provide an algorithm

which may break connectivity between robots so they can reach better

measurement locations, leading to quicker estimate convergence.

Our work is limited to bearing measurements. However,

Bishop [18] proved that a solution to an optimal bearing sequence

also applies (with minor modification) to range sensors, which are

modelled to have range-dependent sensor noise.



IV. THE OPTIMAL OFFLINE ALGORITHM

In the offline problem, the true target location (x⋆) is known. The

goal is to design a minimum-cost measurement strategy S to satisfy

the information requirements in Equation (4). We study the case with

unbounded communication range before introducing communication

constraints in Section IV-C. We start by discussing the structure of

the matrix F since the closed-form representation of F is used to

derive the optimal measurement sequences.

Fig. 2. The target-local coordinate frame. By expressing the measurement
locations (black dots) with respect to the frame rotated by θ, F is a diagonal
matrix. The covariance ellipse’s eigenvectors are aligned with the frame in
which we express sensor locations.

Consider a measurement sequence S, and resulting Fisher Infor-

mation Matrix, F(S). Define a coordinate frame, called the Target-

Local (TL) frame, centered at x⋆. Align the x axis of this frame

with the eigenvector corresponding to the maximum eigenvalue of

F
−1(S). In the TL frame, all sensor locations are specified in polar

coordinates; the ith measurement taken by the uth robot is given as

su,i = (αu,i, ru,i). α is the angle formed with respect to the x axis,

and r is the distance between the sensor location and x⋆.

The TL coordinate frame is illustrated in Figure 2. In practice,

a TL frame is obtained by applying a de-correlating transform, e.g.,

the Singular Value Decomposition or Eigen decomposition of F [25].

The FIM has a convenient decomposition as the sum of all FIM from

each individual observation as given below [3].

FTL(S) =
n
∑

u=1

FTL(Su) =
n
∑

u=1

Nu
∑

i=1

FTL(su,i)

=R(θ)





∑N

i=1
sin2(αi)

r2
i
σ2

0

0
∑N

i=1
cos2(αi)

r2
i
σ2



R(θ)T (5)

The variable N = |S| is the total number of measurements taken by

all robots, and R(θ) is a transform that rotates coordinates to the TL

frame from the world frame. In the TL coordinate frame, two useful

properties of F(S) become evident.

First, the eigenvalues are simply the diagonal elements. Thus,

λF(S) =
N
∑

i=1

sin2(αi)

r2i σ
2

(6)

and

λ̄F(S) =

N
∑

i=1

cos2(αi)

r2i σ
2

. (7)

Note, if (6) is greater than (7), then the axes of the frame are switched

so that (6) is less than (7). In general, the off-diagonal elements of

F(S) are given by
∑N

i=1−
sin(2αi)

r2
i
σ2

. When F(S) is diagonalized this

sum must equal 0, i.e.,

N
∑

i=1

− sin(2αi)

r2i σ
2

= 0. (8)

Second, the value of θ can be adjusted without affecting the

eigenvalues, implying the following useful lemma.

Lemma 1. All measurement locations can be rotated around the true

target location without affecting the eigenvalues of F.

Proof. Changing the orientation of the world frame with respect to

the covariance ellipse (θ in Equation 5) has no effect on eigenvalues

since rotations are orthogonal transforms.

The remainder of the section is devoted to algorithms to find

the optimal number of measurements and the correct assignment of

robots to measurement locations.

A. Active Localization Using a Single Robot

In this section, we solve the special case of Problem 1 when n = 1.

The derivation proceeds as follows. In Lemma 2, we show that the

optimal one-robot trajectory has only two measurement locations.

Lemma 3 establishes the optimal second location as a function of the

first measurement location. The section ends by describing a method

of searching for the optimal first measurement location.

Lemma 2 (Two Measurement Locations are Necessary and Suffi-

cient). There exists an optimal one-robot, offline, bearing-only mea-

surement sequence consisting of exactly two measurement locations.

Proof. First note that there must be at least two measurement

locations to satisfy λF > 0. For contradiction, suppose not and

consider Equation 8 with only one measurement location. Since

sin(2α) = 2 sin(α) cos(α), Equation 8 implies that one of Equa-

tion 6 or Equation 7 is equal to zero, contradicting the assumption

that both eigenvalues are greater than zero.

Fig. 3. An illustration of Lemma 2. Three or more measurement locations are
sub-optimal in the case of a single robot. Two measurement locations s1 and
s2 can be moved closer together to produce a lesser-cost trajectory with the
same information. This process can be repeated until the pair of measurement
locations is collapsed to the same point.

To complete the proof, suppose there are three or more distinct

measurement locations. Let S = {s1, s2, s3} be three consecutive

measurements from the optimal trajectory. Consider the diagonalized

F resulting from the trajectory. Since N ≥ 3, there is a pair

of measurement locations (s1, s2) with either (i) α1 ≥ 0 and

α2 ≥ 0 or (ii) α1 < 0 and α2 < 0. We will show that if three

distinct measurement locations exist, the cost is not optimal. From

Equation (6), we see

λ =
∑

Ni

sin2(αi)

r2i σ
2

, (9)

where Ni is the number of measurements taken at location si. The

locus of measurement locations yielding the same value for Equa-

tion (6) is defined by the circular contour of the form ri = C sinαi.

See Figure 3.

If the pair is on the same contour, then we can reduce the sequence

cost by taking N1 + N2 measurements from one location, with no

affect on the information gains—a contradiction of the assumption

of optimality of the original trajectory.



If not, then one measurement is “more informative” than another.

Let N2
sin2(α2)

r2
2

≥ N1
sin2(α1)

r2
1

(the proof for the opposite case is

similar). This implies s1 lies “inside” the circular contour of s2. Thus,

s2 could be moved closer to s1, increasing the information. By the

triangle inequality, the cost of the path from previous measurement

locations to s1 then to s2 is no longer than before. Since the sequence

now has more information than required, s1 can be moved closer

to s2, producing a trajectory with lesser cost, but with the same

information as the supposed optimal solution—a contradiction of the

optimality of the original trajectory.

From both locations, there may be many measurements taken. For

the moment, assume that the correct measurement counts N1 and N2

are known. We will later show how to search over possible values for

N1 and N2. The following lemma provides a relationship between

the two measurement locations.

Lemma 3 (Structure of One-Robot Trajectory). There exists an

optimal solution with the first measurement location on the line

s0x⋆. Furthermore, given the first measurement location, s0, and

measurement counts for the two measurement locations, N1 and N2,

the second measurement location must satisfy,

sin2 α2 = λd

r22σ
2

N2
+ λd

r21σ
2

N1
− λ2

d

r21r
2
2σ

4

N1N2
(10)

and

r22 = N2
N1 sin

2 α2 − λdσ
2r21

N1λd − λ2
dσ

4r21
. (11)

Proof. Given a starting location s0, the goal is to find the optimal

subsequent measurement locations, s1 and s2. Note that there exists

an optimal algorithm with the first measurement location, s1 placed

on the line between s0 and x⋆. If it was not, rotating both s1 and s2
(adjusting θ as stated in Lemma 1) would reduce the time to travel

between s0 and s1 without affecting the eigenvalues or cost to visit

s2 from s1.

The eigenvalues of the resulting FIM can be found using the

quadratic formula. For any 2 × 2 matrix A with trace tr(A) and

determinant det(A), the eigenvalues λ satisfy

λ(A) =
1

2
tr(A)± 1

2

√

tr(A)2 − 4 · det(A). (12)

When considering the optimal sequence, both tr(F) and det(F) are

positive. Fix the x axis of the coordinate frame to the line s0x⋆. Then

α1 = 0, and it is possible to solve for α2 and r2 using the fact that

det(F) =

N1·N2
∑

i=1

sin2 α2

r21r
2
2σ

4
(c.f. Equation. 6 [26]). (13)

Since λ is equal to λd, the desired information, solving the previous

yields

sin2 α2 = λd

r22σ
2

N2
+ λd

r21σ
2

N1
− λ2

d

r21r
2
2σ

4

N1N2
(14)

and

r22 = N2
N1 sin

2 α2 − λdσ
2r21

N1λd − λ2
dσ

4r21
. (15)

The values of r2 and α2 from Lemma 3 describe a curve as shown

in Figure 4 (for differing values of r1, and λd).

The optimal second measurement location is the closest point on

the resulting curve described by Equations 14. Because the curve
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Fig. 4. Examples of the contours described by Equation (14) and (15) for a
target at (0, 0) (shown as a star), r1 ∈ {1, 1.5, 2} and λd set to .01 (black
lines of lesser curvature) or .05 (blue). σs was 1 and N1 was 1. For example,
if the robot first travels to the position s1 = (2, 0) and takes one measurement
then it can take all remaining measurements from anywhere on the dashed
curve (e.g., s2 as labelled) to satisfy λ(F) = λd.
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Fig. 5. These optimal one-robot offline trajectories corresponding to values
of λd ∈ {1, 2, 4, 6, 12}. Note the robot begins at location (5, 0) and moves
along the x-axis to the first marked location.

is convex (for a given r1, N1, and N2) there exists a unique point

on the curve closest to the first measurement location. Finding the

optimal trajectory reduces to searching for the optimal range, r1, and

measurement counts, N1 and N2.

The cost of the sequence as a function of the two measurement

locations is

Cone-robot =tm(N1 +N2) + d(s0, x
⋆)− r1

+
√

(r2 sinα2)2 + (r1 − r2 cosα2)2. (16)

Minimizing this cost over N1 and N2 can be done by enumeration

using a table of size N × N , with N = N1 + N2. The table

size is bounded since N ≤ d(s0,x
⋆)

tm
+ 2 and N is a positive

integer. If N > d(s0,x
⋆)

tm
, the robot spends more time measuring

than would be required to travel to the true target location. From

close to x⋆, any two measurements that are not collinear with

the target are sufficient to achieve any information objective since

r1 = r2 ≈ 0 (Equation (6)). Each entry in the table corresponds

to a minimization of Equation (16) over r1, which is accomplished

using finite-difference methods. The one-robot trajectories shown in

Figure 5 were calculated for values of λd ∈ {1, 2, 4, 6, 12}.
To summarize, the optimal one-robot trajectory can be found using

Algorithm 1. For brevity, we have omitted boundary checking (e.g.,

0 < r1 ≤ d(s0, x
⋆)) and initialization. As stated, the minimization

on Line 7 is done using a finite difference approximation to gradient



descent.

Algorithm 1 One-Robot Offline Solution

Input: σ, s0, x
⋆, λd

Output: s1, s2, N1, N2

1: Initialize guess for r11
2: Nmax ← d(s0,x

⋆)
tm

+ 2
3: M,R,A← Nmax ×Nmax matrix

4: for t = [2,∞) and r1 not converged do

5: for each row i and column j of M do

6: N1 ← i and N2 ← j
7: Ai,j ← argminα2

Equation (16) subject to Equation (14)

8: Ri,j ← evaluate Equation (15)

9: Mi,j ← evaluate Equation (16)

10: end for

11: Ct ← mini,j M

12: rt+1
1 ← rt1 − c · Ct

−Ct−1

rt
1
−r

t−1

1

for small c

13: end for

14: i⋆, j⋆ ← argmini,j M
15: N1 ← i⋆, N2 ← j⋆

16: α2 ← Ai⋆,j⋆

17: r2 ← Ri⋆,j⋆

18: s1 ← (0, r1), s2 ← (α2, r2)

B. Active Localization with Two Robots

This section details the cost of using two robots and gives an algo-

rithm for deriving the optimal deployment in Algorithm 2. Theorem 1

shows that the same strategy, with slight modification, is also optimal

for many pairs of robots collaborating to locate static targets. Finally,

in Section IV-C a method to incorporate communication constraints

is given.

First, we show that an optimal two-robot deployment is symmetric,

meaning measurement locations occur in pairs with αu = −αv and

are at the same range from x⋆.

Lemma 4 (Symmetric Trajectories). There exists an optimal sym-

metric two-robot measurement strategy. That is, for both robots u
and v,

∀i : αu,i = −αv,i and ru,i = rv,i. (17)

Proof. Consider any optimal measurement sequence, S⋆, consisting

of two trajectories, one for each robot, S⋆
u and S⋆

v . Suppose S⋆
u and

S⋆
v are not symmetric. Construct a symmetric, equivalent trajectory

as follows. Let S′
u and S′

v be the same robot trajectories, but flipped

about the line s0x⋆, as shown in Figure 6. The two options for

symmetric trajectories are either S⋆
u and S′

u or S⋆
v and S′

v . We will

show that at least one must satisfy λmin ≥ λd. Consider that

λmin (F(S⋆
u) + F(S⋆

v )) = λd. (18)

By Weyl’s theorem (Section 6.7 [27]),

λmin

(

F(S′

u) + F(S′

v) + F(S⋆
u) + F(S⋆

v )
)

= 2λd. (19)

Since each measurement location, i, has a mirrored location, j, we

have ri = rj and αi = −αj , which implies Equation (8). Thus,

F(S′
u) + F(S′

v) + F(Su) + F(Sv) is a diagonal matrix, implying

2λd =Nu,1
sin2 αu,1

r2u,1σ
2

+Nv,1
sin2 αv,1

r2v,1σ
2

+N ′

u,1

sin2 α′
u,1

r′2u,1σ
2

+N ′

v,1

sin2 α′
v,1

r′2v,1σ
2

. (20)

Fig. 6. The steps of the proof of Lemma 4. First, the optimal two-robot
strategy, S⋆ = {Su + Sv}, is “mirrored” about the line x⋆s0. Since the
information from the two pairs of symmetric strategies, S′

u+Su or S′
v+Sv ,

is twice the required information, it is clear that one of the two pairs produces
the required information.

Then, either,

Nu,1
sin2 αu,1

r2u,1σ
2

+N ′

u,1

sin2 α′
u,1

r′2u,1σ
2
≥ λd (21)

or Nv,1
sin2 αv,1

r2v,1σ
2

+N ′

v,1

sin2 α′
v,1

r′2v,1σ
2
≥ λd. (22)

Thus, at least one of the symmetric trajectories produce a Fisher

Information Matrix with both eigenvalues at least λd.

A simple corollary follows from the previous lemma.

Corollary 1. There exists an optimal two-robot measurement se-

quence with one measurement location per robot.

Proof. Suppose not. To find a contradiction, construct the symmetric

sequence as described in Lemma 4. By symmetry, both robots have

the same number of measurement locations in their sequences.

If both robots have more than one measurement location to visit

and the trajectories cross the x axis, then it is less costly to redistribute

the measurements such that neither trajectory crosses the x axis.

That is, let all measurements above the x axis (with positive α) be

assigned to one robot, and all below (negative α) to the other. Now

neither of the trajectories cross the x axis. Of the measurement

locations assigned above the x axis, we can choose any two, say s1
and s2. Following the same arguments used in Lemma 2 (illustrated

in Figure 3), we can collapse the two measurement locations for each

robot down to a single location. Repeating this process for all pairs

produces only two measurements: one for each robot.

In a symmetric trajectory with two robots, u and v, and with one

measurement location each, we can reduce Equation (6) by noting

|α1|, N1, and r1 are equal for both robots u and v.

λd = Nu

sin2 αu

r2uσ2
+Nv

sin2 αv

r2vσ2
= 2 ·N⋆ sin

2 α

r2σ2
, (23)

where N⋆ is the optimal value for Nu = Nv .

For a constant σ, λd, and N⋆, the previous equation describes a

pair of circles in polar coordinates as shown in Figure 7. Thus, for

any N⋆, the optimal measurement location lies on the circle of radius

rλ = 1
2

√

2N⋆

λdσ
2 , which lies tangential to the x axis at x⋆, the true

target location. Since the cost to travel to the perimeter of a circle

has a unique minimum, the optimal symmetric trajectory follows in

closed form for each possible integer value of N⋆.

Thus, the two-robot optimization problem reduces to finding the

correct value of N⋆. Both robots are responsible for N⋆ measure-

ments, and are constrained by Equation (23),
λd

2
= N⋆ sin2 α

r2σ2 . The

minimum cost for each robot satisfying Equation (6) is given by the



cost to travel to the boundary of the circle of radius rλ and take N⋆

measurements.

C =

√

d(s0, x⋆)2 +
N⋆

2λdσ2
−

√

N⋆

2λdσ2
+N⋆tm (24)

To complete the optimization, a table of size 1 × ⌈ d(s0,x
⋆)

tm
⌉ is

used to search for the optimal value of N⋆. The ith cell of the table

represents the evaluation of Equation (24) with N⋆ = i. The index

of the cell containing the minimum value is the optimal number of

measurements for a single robot. With the number of measurements

solved, Equation (23) can be used to find the trajectories. The result

is illustrated in Figure 8. The process described in this section is

formalized in Algorithm 2.

Algorithm 2 Two Robot Offline Solution

Input: σ, s0, x
⋆, λd

Output: su, sv, N
1: Nmax ← d(s0,x

⋆)
tm

+ 2
2: M ← Nmax × 1 vector

3: for each row i of M do

4: N ← i
5: Ci ← Equation (24)

6: end for

7: N ← argminC

8: rλ = 1
2

√

2N
λdσ

2

9: su ← closest point on circle of radius rλ centered at (0, rλ)
10: sv ← closest point on circle of radius rλ centered at (0,−rλ)

The proposed algorithm produces the optimal two-robot trajectory.

For completeness, it can be shown that this strategy is optimal for k
pairs of robots as well.

Theorem 1 (Optimality of Algorithm 2 for n Robots). Let there be

n = 2k robots for some positive integer k. Computing the optimal two

robot measurement strategy using sensor noise, σ′ = σ
√

1
k

produces

the optimal n robot measurement strategy.

Proof. It must be shown that there exists an optimal symmetric n
robot strategy to generalize the two-robot algorithm. Let S⋆ be an

optimal set of n trajectories, one for each robot. Similar to Lemma 4,

we can mirror the trajectories and choose the “most informative” of

the n pairs of trajectories as follows. Recall for each pair, Su and

S′
u, αu = −α′

u, ru = r′u, Nu = N ′
u, and the FIM produced by the

pair satisfies λ(F(Su) + F(S′
u)) = 2Nu

sin2 αu

r2
u
σ2 . At least one of the

n pairs satisfies N sin2 α

r2σ2 ≥ λd

n
since the summation of information

from all pairs of trajectories satisfies
∑n

i=1 2Ni
sin2 α

r2
i
σ2

= 2λd. Thus,

any optimal n robot trajectory has identical cost and information

gains as a symmetric n robot trajectory when n is even.

Let Su and S′
u be the pair of trajectories selected in the previous

step. Now, repeat the steps of Corollary 1 to collapse the set of

measurement locations for down to two: one for Su and another for

Sv .

Since the optimal strategy consists of two symmetric paths with

one measurement location, as before, we can solve for only one of

them in closed form. In this case, the path derived will be travelled

by k = n
2

robots, however.

To calculate the n
2

robot optimal trajectory, simply repeat the steps

of the two-robot algorithm, but notice that each “measurement” is

actually n
2

robots measuring simultaneously. Thus, each measurement

produces a factor n
2

more information, which is equivalent to scaling

down the variance of the sensor noise by the same factor.

We now move on to the case when communication among all the

robots is required to form a final estimate of the target location.

C. With Distance-Constrained Communications

In this section, we describe an extension to the previous algorithm

for the case when the robots have limited communication range.

First consider the case of two robots that must be within distance

rc to communicate. A natural strategy is simply to execute the

optimal unconstrained algorithm (e.g., Algorithm 2), then have all

robots move towards the centroid of the robots’ positions until

communication is possible among all robots. Figure 9 illustrates this

strategy as the solid line. However, it may be more time-efficient to

simply move to s′u, which places the robots in communication range

during measurements (as illustrated by the dotted line). However, the

second option requires the robots to travel further before taking the

same number of measurements. Algorithm 3 expands Algorithm 2 to

incorporate this tradeoff.

While simple and easy to use in practice, it is not clear if

Algorithm 3 is always optimal or if it extends to arbitrary numbers of

robots. For example, when many robots are used, it may be more cost

effective to form a long “chain” of robots, allowing the ends of the

chain to spread out to informative locations, while the middle robots

periodically establish links between the distant robots. However, in

Theorem 2, we will show that no other strategy can do significantly

better than the symmetric strategy given in Algorithm 3. The result

of Theorem 2 will allow derivation of a near-optimal, online, and

communication-adaptive algorithm in the next section. Finally, in

light of Theorem 1, Algorithm 3 is useful for any number of pairs

of robots.

Assuming αu, Nu, and ru can be found, expansion of Equa-

tion (24) produces the following equation.
√

d(s0, x⋆)2 + r2u − 2d(s0, x⋆)ru cos(αu) +Nutm

+min(ru sin(αu)−
1

2
rc, 0) (25)

Using this new cost function, the previous two-robot algorithm

changes to the following.

Algorithm 3 Two-Robot Communication-Constrained

Input: σ, s0, x
⋆, λd, rc

Output: su, sv, N
1: Nmax ← d(s0,x

⋆)
tm

+ 2
2: for i ∈ [1, Nmax] do

3: N ← i
4: Ai ← argminα Equation (25)

5: Ci ← evaluate Equation (25) with Ai

6: end for

7: i⋆ ← argminC
8: N ← i⋆

9: α← Ai⋆

10: rλ = 1
2

√

2N
λdσ

2

11: su ← (rλ sin(π
2
− α), rλ cos(π

2
− α))

12: sv ← (rλ sin(π
2
− α),−rλ cos(π

2
− α))

Note that as rc → ∞, the output matches the result from the

previous section. The next result shows that Algorithm 3 is close to

the optimal cost.

Theorem 2 (Algorithm 3 is a Two Approximation). Algorithm 3

produces a measurement strategy of cost less than twice that of the

optimal communication-constrained measurement strategy.

Proof. Let C be the cost of Algorithm 3 when rc → ∞. By

Theorem 1, C is the optimal cost for even numbers of robots. Let



(a) (b) (c)

Fig. 7. An illustration of the constraints on the measurement sequences. (a) by Equation 6, (b) by Equation 7, and (c), the intersection. Note the radius in
(b) is never greater than the radius in (a). Assuming the other measurements are placed, the last measurement U , must fall in the regions specified, while
traveling the least. The dotted line adjoining U and the starting location illustrates the shortest path.
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Fig. 8. Optimal two-robot trajectories for various system parameters. In all figures the robots started at location (3, 0) and the true target was at (0, 0).
Communication constraints were only considered in the top right figure and all other parameters were held fixed. Top-left: λd ∈ {.1, 1, 3, 8}. Top-right:
rc ∈ {2.1, 1.1, .1}. When rc = .1, the robots rendezvous after measuring. When rc = 2.1 the output is the same as the result from unbounded rc. Bottom-
right: tm ∈ {.01, .1, 1} Note that as tm increases, the optimal algorithm travels to more informative locations so that fewer measurements are required.
Bottom-left: σ ∈ {.1, 1, 4, 8}. Note that changing the sensor noise produces the same effect as requiring more information (compare left two figures).

C⋆
r be the cost of the optimal strategy for any communication radius

r and the same number of robots. Then C ≤ C⋆
r since adding

communication constraints can only increase the cost of the strategy.

Let R be the cost for all robots to rendezvous after taking the

measurements defined by Algorithm 3. Clearly R < C since the cost

to rendezvous is at most the cost to move back to the starting location.

Then C ≤ C⋆
r ≤ C+R implies that C⋆

r < 2 ·C. Thus, Algorithm 3

produces a measurement strategy of cost at most twice that of the

optimal communication-constrained measurement strategy.

D. Discussion

The offline algorithms presented here require a repeated minimiza-

tion of convex functions (See Line 7 in Algorithm 3). Interestingly,

due to the symmetry of the offline, multi-robot optimal solution only

one measurement location must be found regardless of the number of

Fig. 9. An illustration of two different choices for communication-constrained
measurement locations. su and sv represent the output of Algorithm 2. From
these locations, the robots can move directly toward each other to communi-
cate. Alternatively, they can move to s′u and s′v , and remain in communication
during measurement. Algorithm 3 finds the optimal placement of symmetric
measurements to minimize the cost while including the rendezvous cost.



robots. Thus, the computational complexity of optimizing N robot

trajectories is the same regardless of N . However, up to
d(s0,x

⋆)
tm

solutions must be evaluated (See Line 1 in Algorithm 2). For our

application, tm ≈ 100 and the time to travel to the true target is only

a few minutes. Thus, we typically evaluate less than 20 solutions

before finding the optimal. Furthermore, Equation 24 is convex in N⋆

and thus newton-like methods could be applied for further speedup

if necessary.

In an online setting, the true target location is not known, but the

objective is the same: For any true target location, the measurement

sequence must satisfy λF(S) > λd. Furthermore, the PDF represent-

ing the distribution of possible target locations changes with each

measurement.

To remain competitive with the optimal case, an online measure-

ment strategy should not allocate too much time moving towards

a distant target estimate if it is highly likely to change given a

few measurements. In the next section, we rely on the fact that

Algorithm 3 is simple to implement and build an adaptive algorithm

for real-world localization problems.

V. ONLINE ALGORITHM

In this section, we present a conversion of the offline strategy

presented in the previous section into a near-optimal online strategy.

In the online setting, algorithms do not have access to the true target

location x⋆. Instead, we start with an estimate in the form of a

prior PDF. It is important to note that the goal is still to find the

required amount of information with respect to the true target location

irrespective of the initial estimate.

Given an estimate of x⋆, one possible extension to the offline

algorithm is to choose the most likely point in the PDF to be x⋆, then

execute the offline algorithm with respect to this point. For example,

if the target estimate is a two-dimensional Gaussian, then the most

likely point is the mean, x̂. However, the true target location may

be close to the robots’ initial location, while x̂ may not, resulting in

much more work than is necessary.

Instead, consider x, the closest point of the current PDF with “high

enough” probability. For example, x could be the closest point lying

within the 3−sigma bound of a two-dimensional Gaussian, which

accounts for 99.7 percent of the probability mass. Given the high

likelihood of the true target being inside the 3−sigma bound, it is

“safe” to assume the optimal algorithm must travel at least to the

closest point within this 3−sigma bound. The 3 − σbound of a 2D

Gaussian distribution is an ellipse, but in general, any convex shape

containing the desired amount of probability mass can be used.

More formally, we adapt the previously discussed offline algo-

rithms to an online problem setting as follows. Let the offline two-

robot algorithm be described by the function A(s0, x⋆, rc, n, λd, tm)
with cost C(s0, x

⋆, rc, n, λd, tm) for n robots starting at location s0
with communication range rc and measurement time tm.

At each step, i, form a convex shape Ri containing the desired

probability mass (e.g., the 3-σ bounds of our Gaussian prior). Then,

locate the point in the interior of the shape closest to the robot’s

starting location, label it x, execute A(s0, x, rc, n, λd, tm), and pay

cost C(s0, x, rc, n, λd, tm). The gathered measurements are used

to update the hypothesis, a new x is selected from the posterior

PDF, and the centroid of the robots’ positions is assumed to be the

robots’ starting location. For example, Algorithm 3 satisfies all the

requirements of the offline algorithm (A) as discussed in the previous

section.

We call such an algorithm MULTI-STEP, and illustrate the steps

for a Gaussian target estimate in Algorithm 4. The remainder of

this section shows that using repeated calls to A produces near-

optimal costs with high probability. Specifically, the cost is at most

a logarithmic factor worse than optimal assuming the true target is

contained in all convex regions chosen at each time step.

In practice, we use a filtering algorithm to update the PDF after

the robots take measurements of the bearing to x⋆. We require some

technical assumptions about the starting locations of the robots and

the filtering method used. As mentioned, at each step of the algorithm,

we use a region Ri to contain the possible locations for x⋆. In

Lemmas 5 and 6, as well as Theorem 3, we require that the robots

begin outside the region and that the true target will fall within the

region with probability 1− ǫ which is independent of the choice of

region (i.e., P (x⋆ ∈ Ri) is independent from P (x⋆ ∈ Rj) for all

i 6= j). The methods used in [11] ensure the robots begin outside

a suitable region. The second condition is satisfied if the filter used

is consistent and the last requirement is satisfied if each estimate of

the target location is conditioned only on the measurements received

and the measurements have independent noise [4]. In practice, we

employ a batch-processed, maximum likelihood estimator [4], [28].

The rest of the section proceeds as follows. First, Lemma 5 shows

the cost of each individual invocation is bounded. Then, Lemma 6

proves an upper bound on the number of calls to A required to

localize any target to required precision. This will produce the bound

presented in Theorem 3.

Algorithm 4 MULTI-STEP(s0, x̂(0),Σ(0), rc, λd, tm, n)

Σ(i)← Σ(0)
x̂(i)← x̂(0)
while λ̄(Σ(i)) > 1

λd

do

Ri ← circle of radius 3 ·
√

λ̄(Σ(i)) at point x̂(i)
xd ← closest point on Ri

su,i, sv,i ← A(si, xd, rc, n, λd, tm)
Z ← Collect measurements from su and sv .

x̂(i)← Update target estimate using Z
si ← centroid of su,i and sv,i

end while

Lemma 5 (Bounded Subroutine Cost). Let R be a convex region

such that P (x⋆ ∈ R|Z) = 1 − ǫ, where Z is the measurements

obtained by all previous steps. Let x be the closest point inside (or

on the boundary of) R to the robots’ starting location, s0. Let C(x)
be the cost of the call to A(s0, x). Let A be a γ-approximation of

optimal: the optimal offline cost C⋆ satisfies C(s0, x
⋆) ≤ γC⋆. Then

the cost, C(s0, x) ≤ γC⋆ with probability equal to 1− ǫ.

Proof. By definition, x is the closest point in R to the robots’ starting

location, and so d(s0, x
⋆) ≥ d(s0, x) We can prove that C(x) ≤

C(x⋆) by contradiction. If C(x⋆) < C(x) we could take all the

measurements taken with respect to x⋆ and place them in the same

configuration around x. Now, both invocations spend the same time

measuring. However, travelling to sensor locations with respect to

x would take no more time than travelling to sensor locations near

x⋆, since d(s0, x) ≤ d(s0, x
⋆) by assumption. This contradicts the

assumption that C(x⋆) < C(x).
Since C(x) ≤ C(x⋆) and C(x⋆) ≤ γC⋆, it follows that C(x) ≤

γC⋆.

Thus, the cost of each invocation of A is bounded. However, it may

take arbitrarily many calls to A to reduce the uncertainty adequately,

producing an unbounded cost compared to the optimal algorithm.

The following result shows the number of calls is small compared to

optimal, assuming the regions Ri contain the true target.

Intuitively, we will establish that all measurements are taken inside

the K−sigma bound of the true covariance, with K possibly large,

but bounded. The true covariance (CRLB) is proportional to
√

1
λF

at



Fig. 10. An illustration of the two-robot MULTI-STEP algorithm (solid
paths) and the optimal A algorithm (dashed paths). The robots begin at
location s0. The optimal choice is to move directly to x⋆, but we are unsure of
the location of x⋆. Thus, we form a convex region R such that the probability
x⋆ is in R is high. At each step of the MULTI-STEP algorithm, we do less
work than A(s0, x⋆) by Lemma 5. Since the number of A executions is
bounded by Lemma 6, we do not do significantly more work than optimal by
Theorem 3.

each measurement step. We will show the information gained at each

step is inversely proportional to the range from the true target, and

the range is inversely proportional to the current information. Thus,

the information gained by each measurement is proportional to the

sum of the information already obtained. That is, each measurement

step produces a constant-factor increase in λF producing quick

convergence to λd.

Lemma 6 (Number of Calls to A). The MULTI-STEP algorithm

requires O(logb λd) calls to the optimal offline algorithm, where b =
O

(

1 + 1
σ2

)

.

Proof. In what follows, S is the set of all measurement locations

visited during an execution of MULTI-STEP, and Si is the measure-

ment locations chosen by the ith call to A. The FIM of all previous

measurement steps up to and including the ith step is denoted Fi. Let

MULTI-STEP use T calls to A. Then λFT = λF(S, x⋆) ≥ λd (we

drop the x⋆ in further analysis).

Recall from Equation 5 that

FT = F(S) =
T
∑

i=1

F(Si). (26)

By Weyl’s theorem (Section 6.7 [27]),

λFT = λF(S) ≥
T
∑

i=1

λF(Si). (27)

The right hand side of Equation 27 represents the information

gains from each of the T measurement steps. Now consider the ith

measurement step and the resulting F.

λFi ≥ λF(Si) + λFi−1 (28)

≥
N
∑

j=1

sin2 αj

r2jσ
2

+ λFi−1 (29)

where the second equation follows from Equation 5 expanded for all

N measurements taken during the ith step. From Lemma 2 we know

that N ≥ 2 measurements are taken.

Let Ri be the ith region chosen by MULTI-STEP. We will assume

that Ri contains the true target location and is convex. Since each

region is convex, and the measurement locations chosen by A are

symmetric about the line s0x (Figure 10), there is no point in the

intersection of all the regions which is collinear with the measurement

locations chosen. So, for all of the T sets of measurement locations

chosen by MULTI-STEP, we have

λF(Si) =
N
∑

j=1

sin2 αj

r2jσ
2

> 0 (30)

which implies that each step provides non-zero progress of λFi to

λd.

To lower-bound the rate of convergence let

K = max
i

ri
√

λFi. (31)

By definition, for all steps i, ri ≤ K√
λFi

. In light of Equation 30 and

substituting Equation 31 into Equation 29 we see

λFi ≥ λF(Si) + λFi−1

≥
N
∑

j=1

sin2 αj

K2σ2
λFi + λFi−1

≥ β

K2σ2
λFi−1 + λFi−1

≥
(

1 +
β

K2σ2

)

λFi−1

where for brevity β was chosen to be mini

∑

sin2 αi.

The previous implies at least a constant factor increase in infor-

mation about the true target location (and corresponding decrease in

the CRLB) at every time step. If MULTI-STEP makes N ≥ 1 calls

to A, then

λFN ≥ λF0

(

1 +
β

K2σ2

)N

N ≤ logb(λFN )− logb(λF0) (32)

with b =
(

1 + β

K2σ2

)

> 1.

It is worth noting that the previous lemma establishes the cost of

the MULTI-STEP algorithm as a function of the desired uncertainty,

rather than the range to the true target or other uncontrollable

variables. Our final result follows: We show that the cost of using

MULTI-STEP(x̂) is less than a constant factor worse than the

optimal offline algorithm, A(x⋆) with high probability.

Theorem 3 (Cost Bounds). With probability, (1− ǫ)logb λd−logb λF0 ,

the ratio of the cost of the MULTI-STEP algorithm to the optimal

offline algorithm satisfies
MULTI-STEP(x̂(0))

A(x⋆)
= O(logb λd− logb λF0),

where b = O
(

1 + 1
σ2

)

, λF0 is the “prior” information (if available),

λd is the desired information, and 0 < ǫ < 1.

Proof. By Lemma 6 MULTI-STEP makes O(log λd − log λF(0))
calls to A, and by Lemma 5 each of these costs is less than a scalar

multiple of the optimal cost. Thus, the first result follows.

When the regions are selected to independently contain the true

target location with probability 1 − ǫ, the probability all regions

contain the target is (1 − ǫ)N , for N regions. Given the value of

N from Lemma 6, the probability follows as stated.

In this section we have shown that an optimal offline algorithm

can be converted to an online algorithm by carefully selecting a

conservative (nearby) point to serve as a proxy for the true target

location. The method is general to any offline optimal algorithm or

any filtering method, provided an independent convex region can be

described which contains the true target with high probability. In the

next section we verify the results of Theorem 3 in simulations before

testing the MULTI-STEP algorithm in field experiments.



(a) The experiment area. (b) The execution steps of the algorithm. (c) The robot paths overlaid.

Fig. 11. Experiment results from Lake Staring, Minnesota, USA. (a): The experiment area. The true target (and camera in [29]) were placed on the docks
near the bottom right corner (labelled with a star). The robots began near the top-middle (circle). (b): The two calls to Algorithm 3 produced the dark paths
shown, and reduced the uncertainty (the blue circles). The final actual uncertainty was the solid ellipse. (c): More execution details. The solid red circles are
the points where the robots exchanged information. The figure covers an area approximately 200m vertically by 150m horizontally.

(a) Number of calls to A (b) Ratio of costs

Fig. 12. The aggregate results of numerical studies. Left: the number of calls

to A as a function of
λd

λF0
. Right: the ratio of costs of online algorithm to

optimal offline algorithm, as a function of
λd

λF0
. Shown is the maximum value

encountered during simulations.

VI. IMPLEMENTATIONS AND EXPERIMENTS

We now explore the results of Theorem 3 through simulations and

experiments. Our goal is to verify the logarithmic behavior of the

bound presented in the previous section and test the effectiveness of

the algorithm in locating radio-tags in real-world environments.

A. Simulations

We explore the effects of the ratio of prior information to desired

precision through simulations. In each simulation, we provide a

prior estimate of the target location with circular covariance and

eigenvalues 1
λF0

and execute the MULTI-STEP algorithm until the

uncertainty converges to the desired 1
λd

.

We repeatedly test the performance ratio by sampling a true target

location from the prior PDF and executing Algorithm 3 using the true

target location, and MULTI-STEP on the hypothesis. To give a real-

world sense of scale to the simulations, note our choice represents a

starting hypothesis (three sigma-bound) which grows to encompass a

254 square kilometer area, while requiring a final estimate which is

as accurate as a commercial GPS fix (i.e., a few meter uncertainty).

The results are presented in Figure 12. The x-axis of the figures

shows the ratio
λd

λF0
(desired gain in information). The ratio of prior

uncertainty to final uncertainty is the inverse of this. According to

Theorem 3, we expect the curve to roughly match log λd.

First, we present the actual number of calls the MULTI-STEP al-

gorithm makes to the A subroutine. We notice a logarithmic trend

to the ratios, as expected. These results are shown in Figure 12(a).

The number of calls is not necessarily reflective of the ratio of the

costs between our online algorithm and the optimal offline algorithm,

since the total distance traveled for each call will decrease.

To explore this, we present the ratio of the actual cost in Fig-

ure 12(b) from the same trials. The actual cost is given by the

maximum distance traveled plus the maximum time spent measuring.

We expect the cost ratio to significantly change, depending on the

relative positions of the true target location, hypothesis location and

uncertainty, and the starting robot positions. In Figure 12(b) we

present the worst-case ratio of costs encountered during simulations

for each prior hypothesis. Interestingly, the worst-case ratio of costs

was less than 7 in these trials, which was less than the number of calls

to the A subroutine. This suggests in practice the cost of our online

algorithm could be closer to the optimal offline algorithm than is

suggested by the theoretical results since each subsequent invocation

seems to cost less than the previous one.

B. Field Experiments

As described previously, we are building a working multi-robot

system to search for invasive fish in lakes. To test the suitability

of the algorithm to real-world conditions, we have implemented the

algorithm for field trials on lakes in Minnesota, USA. We report

five field experiments which show the feasibility of the algorithm

in practice. The robots used were OceanScience QBoats, pictured

in Figure 1. Although designed for remote operation, the boats

were augmented with on-board laptops and motor control boards

for autonomous navigation, and pan-tilt servos, antennas, and real-

time spectral analyzers to produce bearing measurements. They are

2 meters in length and have an average speed of 1 meter per second.

The robots were used to localize a low-power radio transmitter which

is typical of models used by field biologists when tracking carp. The

tags transmit an uncoded pulse approximately once per second and

our system can detect a radio tag from 100 meters on average. Due to

the low transmission rate, it can take up to one minute to construct a

reliable bearing measurement by rotating the antenna while sampling

the signal strength.

The experiment was run in Lake Staring, Minnesota, USA (shown

in Figure 11) in 2012 and 2013. The transmitting tag was deployed

at a known location in the environment, and the robots executed

the MULTI-STEP algorithm. In our prior work on this system, we

described a method for reliably constructing a consistent, bounded-

uncertainty prior estimate of the target location [11], and so we

assume a prior is available during the bearing-only localization phase.



The boats began 140 meters from the target and executed the

algorithm given in Section V. To exchange measurements the robots

used an ad-hoc wireless network. An example of the final result is

shown in Figure 11(c), as a blue square. We show the algorithm

steps in Figure 11(b), and the actual robot paths in Figure 11(c).

After each measurement, the boats transmitted measurement values

over the wireless network. We used a low power network which could

not communicate more than 10-20 meters reliably. In each of the five

experiments, the robots traveled a combined distance of one kilometer

and localized the target to within 10 meters of its measured location.

Note the position of the tag’s location was accurate to within 5 meters

due to GPS error. In all cases, the localization took the expected two

steps to locate the target. The final expected error (distance of the

final mean of the estimate from the true target mean) was 11.2, 7.1,

1.3, 10.1, and 23.9 meters across the five trials. We provide a video

of the localization process at [29].

VII. CONCLUSIONS

In this paper, we make three contributions to the problem of active

localization of static targets with mobile bearing sensors. We started

by presenting the first derivation of the optimal deployment of mobile

bearing sensors with respect to a known target location. We then

extended this result to provide near-optimal deployment strategies

when subjected to limited communication range. Next, we used

the insights provided by these results to develop an online active

localization strategy suitable for field deployments. We showed a

theoretical upper bound of a logarithmic approximation of the optimal

strategy. We verified the theoretical bounds through simulations

studies and presented a working field implementation in our intended

operating environment. In field trials, two communicating robots were

able to repeatedly locate a radio transmitter.

A clear next step for this work is locating mobile targets. If the

target loiters in a small region, we expect that the motion of the target

will have negligible affect on the cost to localize.

Our future work will also focus on tightening the logarithmic

approximation of our proposed online algorithm. We expect that a

constant factor approximation is possible. Another avenue for future

work is reducing the number of communication steps in the online

algorithm. Design and analysis of active localization algorithms for

multiple robots when multiple targets are nearby is also an important

avenue for future work.
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